DOI QR코드

DOI QR Code

Synthesis and Oxidative Catalytic Property of Ruthenium-doped Titanate Nanosheets

루테늄이 도입된 티타네이트 나노시트의 합성 및 산화 촉매 활성 연구

  • Lee, Yoonhee (Department of chemistry and RINS, Gyeongsang National University) ;
  • Kwon, Ki-Young (Department of chemistry and RINS, Gyeongsang National University)
  • 이윤희 (경상대학교 화학과, 경상대 기초과학연구소) ;
  • 권기영 (경상대학교 화학과, 경상대 기초과학연구소)
  • Received : 2017.06.07
  • Accepted : 2017.07.22
  • Published : 2017.10.10

Abstract

Sodium titanate nanosheets were prepared by a hydrothermal synthesis method under basic conditions. Ruthenium was introduced on the surface of sodium titanate nanosheets through an UV irradiation in the aqueous $RuCl_3$ solution. The crystal phase and morphology of synthesized samples were analyzed by X-ray diffraction, transmission electron microscopy and energy dispersive spectroscopy. In addition, the content of Ru was evaluated by inductively coupled plasma. It was proposed that a monomeric form of ruthenium was incorporated on the surface of sodium titanate. Ruthenium incorporated sodium titanates were applied to alcohol oxidation using molecular oxygen as an oxidant. The sample with 7% ruthenium showed a catalytic activity with a turnover frequency value of $2.1h^{-1}$ in oxidizing benzyl alcohol to benzaldehyde without any other byproducts at $105^{\circ}C$ and 1 atmosphere.

본 연구에서는 염기조건에서 수열합성법으로 소듐 티타네이트 나노시트를 합성하였다. 합성한 소듐 티타네이트 나노시트를 $RuCl_3$ 수용액에서 자외선을 조사하여 루테늄을 소듐 티타네이트 나노시트의 표면에 도입하였다. X-선 회절분석과 투과전자현미경 및 에너지 분산형 분광기 실험을 통하여 샘플의 결정성과 형태를 분석하였고, 그 결과 루테늄원자가 소듐 티타네이트 표면에 균일하게 흡착되어 있는 것을 확인할 수 있었다. 또한 유도결합플라즈마 발광분광분석법을 통하여 소듐 티타네이트 나노시트에 도입된 루테늄을 정량하였다. 루테늄이 도입된 소듐 티타네이트 나노시트의 경우 산소를 산화제로 이용한 알코올 산화반응에 응용하였으며, 특히 루테늄이 7% 도입된 소듐 티타네이트 나노시트는 $105^{\circ}C$, 1기압 상에서 벤질 알코올을 다른 부산물 없이 벤즈알데하이드로 산화시키는 데 있어서 turnover frequency가 $2.1h^{-1}$인 촉매활성을 보였다.

Keywords

References

  1. B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films, Nature, 353, 737-740 (1991). https://doi.org/10.1038/353737a0
  2. J. B. Joo, I. Lee, M. Dahl, G. D. Moon, F. Zaera, and Y. Yin, Controllable synthesis of mesoporous $TiO_2$ hollow shells: Toward an efficient photocatalyst, Adv. Funct. Mater., 23, 4246-4254 (2013). https://doi.org/10.1002/adfm.201300255
  3. H. L. Kuo, C. Y. Kuo, C. H. Liu, J. H. Chao, and C. H. Lin, A highly active bi-crystalline photocatalyst consisting of $TiO_2$ (B) nanotube and anatase particle for producing $H_2$ gas from neat ethanol, Catal. Lett., 113, 7-12 (2007). https://doi.org/10.1007/s10562-006-9009-1
  4. N. Li, L. Zhang, Y. Chen, M. Fang, J. Zhang, and H. Wang, Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures, Adv. Funct. Mater., 22, 835-841 (2012). https://doi.org/10.1002/adfm.201102272
  5. K. Vaaramaa and J. Lehto, Removal of metals and anions from drinking water by ion exchange, Desalination, 155, 157-170 (2003). https://doi.org/10.1016/S0011-9164(03)00293-5
  6. P. Sylvester and A. Clearfield, The removal of strontium from simulated Hanford tank wastes containing complexants, Sep. Sci. Technol., 34, 2539-2551 (1999). https://doi.org/10.1081/SS-100100789
  7. T. Kokubo, Design of bioactive bone substitutes based on biomineralization process, Meter. Sci. Eng. C, 25, 97-104 (2005). https://doi.org/10.1016/j.msec.2005.01.002
  8. J. Ramirez-Salgdo, E. Djurado, and P. Fabry, Synthesis of sodium titanate composites by sol-gel method for use in gas potentiometric sensors, J. Eur. Ceram. Soc., 24, 2477-2483 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.07.014
  9. J. Huang, Y. Cao, Z. Deng, and H. Tong, Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment, J. Solid State Chem., 184, 712-719 (2011). https://doi.org/10.1016/j.jssc.2011.01.023
  10. M. A. Bennett and T. W. Matheson, Catalysis by ruthenium compounds, Compr. Organomet. Chem., 4, 931-965 (2006).
  11. N. A. Owston, A. J. Parker, and J. M. J. Williams, Oxidation of primary alcohols to methyl esters by hydrogen transfer, Chem. Commun., 8, 624-625 (2008).
  12. J. Liu, S. He, C. Li, F. Wang, M. Wei, D. G, Evans, and X. Duan, Confined synthesis of ultrafine Ru-B amorphous alloy and its catalytic behavior toward selective hydrogenation of benzene, J. Mater. Chem. A, 2, 7570-7577 (2014). https://doi.org/10.1039/c4ta00023d
  13. Y. Horiuchi, G. Kamei, M. Saito, and M. Matsuoka, Development of ruthenium-loaded alkaline-earth titanates as catalysts for ammonia synthesis, Chem. Lett., 42, 1282-1284 (2013). https://doi.org/10.1246/cl.130574
  14. H. Yoon, J. Zou, S. Park, N. M. Sammes, and J. S. Chung, Preliminary studies about synthesis and electrical properties of ruthenium doped lanthanum strontium titanate as a potential anode of solid oxide fuel cells, ECS Trans., 57, 1655-1661 (2013). https://doi.org/10.1149/05701.1655ecst
  15. N. K. Anand and E. M. Carreira, A simple, mild, catalytic, enantioselective addition of terminal acetylenes to aldehydes, J. Am. Chem. Soc., 123, 9687-9688 (2001). https://doi.org/10.1021/ja016378u
  16. A. B. Northrup and D. W. C. MacMillan, The first direct and enantioselective cross-aldol reaction of aldehydes, J. Am. Chem. Soc., 124, 6798-6799 (2002). https://doi.org/10.1021/ja0262378
  17. R. A. Sheldon, I. W. C. E. Arends, and A. Dijksman, New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 57, 157-166 (2000). https://doi.org/10.1016/S0920-5861(99)00317-X
  18. R. A. Sheldon, I. W. C. E. Arends, and G.-J. T. Brink, A. Dijksman, Green, catalytic oxidations of alcohols, Acc. Chem. Res., 35, 774-781 (2002). https://doi.org/10.1021/ar010075n
  19. Z. Opre, D. Ferri, F. Krumeich, T. Mallat, and A. Baiker, Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite, J. Catal., 241, 287-295 (2006). https://doi.org/10.1016/j.jcat.2006.05.011
  20. T. L. Stuchinskaya and I. V. Kozhevnikov, Novel efficient catalysts based on Ru of Pd oxide for selective liquid-phase oxidation of alcohols with nitrous oxide, Catal. Commun, 4, 609-614 (2003). https://doi.org/10.1016/j.catcom.2003.09.005