DOI QR코드

DOI QR Code

A New Frontier for Biological Control against Plant Pathogenic Nematodes and Insect Pests I: By Microbes

식물병원성 해충과 선충 방제의 새지평 I: 미생물

  • Lee, Hae-Ran (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Jung, Jihye (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Riu, Myoungjoo (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB)) ;
  • Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
  • 이혜란 (한국생명공학연구원 분자식물세균실험실) ;
  • 정지혜 (한국생명공학연구원 분자식물세균실험실) ;
  • 류명주 (한국생명공학연구원 분자식물세균실험실) ;
  • 류충민 (한국생명공학연구원 분자식물세균실험실)
  • Received : 2017.03.23
  • Accepted : 2017.04.22
  • Published : 2017.06.30

Abstract

World-wide crop loss caused by insect pest and nematode reaches critical level. In Korea, similar crop loss has been gradually augmented in the field and greenhouse due to continuous crop rotation. The current methods on controlling herbivorous insects and plant parasitic nematodes are mostly depended on agro-chemicals that have resulted additional side-effect including occurrence of resistant insects and nematodes, environmental contamination, and accumulation in human body. To overcome the pitfalls, microbe-based control method have been introduced and applied for several decades. Here, we revised biological control using by the bacteria, fungi, and virus in order to kill insect and nematode and to attenuate its virulence mechanism. The introduced microbes mainly secreted out the hydrolysing enzymes and toxic compounds to target host membrane or cell wall directly. Indirectly, the microbe-triggered plant innate immunity against insects and nematodes was also reported. In conclusion, we provide a new frontier of microbe-based environmentally friendly procedure and effective methods to manage insects and nematodes.

전 세계적으로 주요 작물에서 식물 병원성 해충 및 선충으로 인한 작물 생산량 감소 등의 경제적 손실이 심각하다. 우리나라의 경우 시설 재배지의 연작으로 인해 해충과 선충의 발생이 증가하여 작물의 피해가 점차 증가하고 있는 추세다. 현재 주로 사용되고 있는 식물병원성 해충 및 선충의 방제법은 사용이 편리하고 비용이 저렴한 화학적 방제법을 이용하고 있지만 화학 농약의 남용으로 인한 약제 저항성이 발생하고, 화학 약품으로 인한 인체 유해성 및 환경오염 문제가 대두되고 있다. 이로 인해 최근 친환경적인 방제에 관한 지속적인 연구와 관심이 높아지면서 식물병원성 해충과 선충에 대하여 살충/살선충 활성을 나타내는 미생물을 생물학적 방제법으로 이용하기 위한 시도가 증가하고 있다. 본 리뷰에서는 식물병원성 해충과 선충에 대한 살충/살선충 활성을 나타내는 세균, 진균, 바이러스에 의한 살충 및 살선충 사례와 기전들을 소개하였다. 이러한 미생물의 활성은 외피 분해효소와 독소물질생산을 통한 직접적인 작용기전과 기주 식물의 저항성 유도를 통한 간접적인 작용기전에 의해서 일어난다. 본 리뷰를 통하여 선충과 해충에 대한 생물학적 방제법과 그 분자 작용기전에 대한 이해를 돕고, 최신 살충 및 살선충 연구들을 소개함으로써 국내의 농민들과 연구자들의 미생물을 기반으로 한 친환경적 해충 및 선충의 방제법에 대한 저변확대를 기대한다.

Keywords

References

  1. Abbas, H. K., Tak, H., Boyette, C. D., Shier, W. T. and Jarvis, B. B. 2001. Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria. Phytochemistry 58: 269-276. https://doi.org/10.1016/S0031-9422(01)00214-X
  2. Ahmadian, G., Degrassi, G., Venturi, V., Zeigler, D. R., Soudi, M. and Zanguinejad, P. 2007. Bacillus pumilus SG2 isolated from saline conditions produces and secretes two chitinases. J. Appl. Microbiol. 103: 1081-1089. https://doi.org/10.1111/j.1365-2672.2007.03340.x
  3. Akbulut, N., Tuzlakoglu Ozturk, M., Pijning, T., Issever Ozturk, S. and Gumusel, F. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. J. Biotechnol. 164: 123-129. https://doi.org/10.1016/j.jbiotec.2012.12.016
  4. Akhtar, M. S. and Siddiqui, Z. A. 2008. Glomus intraradices, Pseudomonas alcaligenes and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J. Gen. Plant Pathol. 74: 53-60. https://doi.org/10.1007/s10327-007-0062-4
  5. Ali, M. P., Kato, T. and Park, E. Y. 2015. Improved insecticidal activity of a recombinant baculovirus expressing spider venom cytoinsectotoxin. Appl. Microbiol. Biotechnol. 99: 10261-10269. https://doi.org/10.1007/s00253-015-6846-0
  6. Arrizubieta, M., Williams, T., Caballero, P. and Simon, O. 2014. Selection of a nucleopolyhedrovirus isolate from Helicoverpa armigera as the basis for a biological insecticide. Pest Manag. Sci. 70: 967-976. https://doi.org/10.1002/ps.3637
  7. Arthurs, S. P. and Lacey, L. A. 2004. Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control 31: 388-397. https://doi.org/10.1016/j.biocontrol.2004.05.004
  8. Arthurs, S. P., Lacey, L. A. and de la Rosa, F. 2008. Evaluation of a granulovirus (PoGV) and Bacillus thuringiensis subsp. kurstaki for control of the potato tuberworm (Lepidoptera: Gelechiidae) in stored tubers. J. Econ. Entomol. 101: 1540-1546. https://doi.org/10.1093/jee/101.5.1540
  9. Ash, C., Priest, F. G. and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64: 253-260.
  10. Avery, P. B., Hunter, W. B., Hall, D. G., Jackson, M. A. and Powell, C. A. 2016. Efficacy of topical application, leaf residue or soil drench of blastospores of Isaria fumosorosea for citrus root weevil management: laboratory and greenhouse investigations. Insects 7: 66. https://doi.org/10.3390/insects7040066
  11. Bangera, M. G. and Thomashow, L. S. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155-3163.
  12. Becker, J. O. 2014. Plant health management: crop protection with Nematicides. In: Encyclopedia of Agriculture and Food Systems, Vol. 4, ed. by N. K. Van Alfen, pp. 400-407. Elsevier, London, UK.
  13. Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
  14. Bird, D. M., Opperman, C. H. and Davies, K. G. 2003. Interactions between bacteria and plant-parasitic nematodes: now and then. Int. J. Parasitol. 33: 1269-1276. https://doi.org/10.1016/S0020-7519(03)00160-7
  15. Blumer, C. and Haas, D. 2000. Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol. 173: 170-177. https://doi.org/10.1007/s002039900127
  16. BLW (2015 onwards). Schweizerische Eidgenossenschaft - Bundesamt fur Landwirtschaft. Pflanzenschutzmittelverzeichnis (Stand:16.06.2015). URL https://www.blw.admin.ch/ [13 July 2015].
  17. Bonning, B. C. and Nusawardani, T. 2007. Introduction to the use of baculoviruses as biological insecticides. Methods Mol. Biol. 388: 359-366.
  18. Book, A. J., Lewin, G. R., McDonald, B. R., Takasuka, T. E., Doering, D. T., Adams, A. S., Blodgett, J. A., Clardy, J., Raffa, K. F., Fox, B. G. and Currie, C. R. 2014. Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl. Environ. Microbiol. 80: 4692-4701. https://doi.org/10.1128/AEM.01133-14
  19. Borner, H. 2009. Pflanzenkrankheiten und Pflanzenschutz. 8., neu bearbeitete und aktualisierte Auflage. Springer Verlag, Heidelberg, Berlin.
  20. Bowen, D. J. and Ensign, J. C. 1998. Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl. Environ. Microbiol. 64: 3029-3035.
  21. Brand, D., Roussos, S., Pandey, A., Zilioli, P. C., Pohl, J. and Soccol, C. R. 2004. Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita. Appl. Biochem. Biotechnol. 118: 81-88. https://doi.org/10.1385/ABAB:118:1-3:081
  22. Bravo, A., Likitvivatanavong, S., Gill, S. S. and Soberon, M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41: 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  23. Brazilian National Genome Project Consortium. 2003. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. U. S. A. 100: 11660-11665. https://doi.org/10.1073/pnas.1832124100
  24. Bream, A. S., Ghazal, S. A., Abd el-Aziz, Z. K. and Ibrahim, S. Y. 2001. Insecticidal activity of selected actinomycete strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Meded. Rijksuniv. Gent. Fak. Landbouwkd. Toegep. Biol. Wet. 66: 503-512.
  25. Bunnori, N. M. and Mohamed, R. 2012. Identification and characterization of Burkholderia pseudomallei K96243 serine and metallopeptidases. Procedia Comput. Sci. 11: 36-42. https://doi.org/10.1016/j.procs.2012.09.005
  26. Burkholder, W. H. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology 40: 115-117.
  27. [BVL] Bundesamt fur Verbraucherschutz und Lebensmittelsicherheit (2015 onwards). Federal Office of Consumer Protection and Food Safety. Register of Plant Protection Products. URL https://goo.gl/Q05AOg [13 July 2015].
  28. Cabrera, J. A., Menjivar, R. D., Dababat, A. A. and Sikora, R. A. 2013. Properties and nematicide performance of avermectins. J. Phytopathol. 161: 65-69. https://doi.org/10.1111/jph.12014
  29. Cakmakci, R., Donmez, F., Aydin, A. and Sahin, F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019
  30. Casique-Valdes, R., Sanchez-Lara, B. M., Ek-Maas, J., Hernandez-Guerra, C., Bidochka, M., Guizar-Guzman, L., Lopez-Arroyo, J. I. and Sanchez-Pena, S. R. 2015. Field trial of aqueous and emulsion preparations of entomopathogenic fungi against the asian citrus psyllid (Hemiptera: Liviidae) in a lime orchard in Mexico. J. Entomol. Sci. 50: 79-87. https://doi.org/10.18474/0749-8004-50.1.79
  31. Cezairliyan, B., Vinayavekhin, N., Grenfell-Lee, D., Yuen, G. J., Saghatelian, A. and Ausubel, F. M. 2013. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog. 9: e1003101. https://doi.org/10.1371/journal.ppat.1003101
  32. Charles, J. F., Silva-Filha, M. H. and Nielsen-LeRoux, C. 2000. Mode of action of Bacillus sphaericus on mosquito larvae: incidence on resistance. In: Entomopathogenic Bacteria: From Laboratory to Field Application, eds. by J. F. Charles, M. H. Silva-Filha and C. Nielsen-LeRoux, pp. 237-252. Springer Netherlands, Dordrecht, Netherlands.
  33. Chen, T. H., Hsu, C. S., Tsai, P. J., Ho, Y. F. and Lin, N. S. 2001. Heterotrimeric G-protein and signal transduction in the nematodetrapping fungus Arthrobotrys dactyloides. Planta 212: 858-863. https://doi.org/10.1007/s004250000451
  34. Chen, Z. X. and Dickson, D. W. 1998. Review of Pasteuria penetrans: biology, ecology and biological control potential. J. Nematol. 30: 313-340.
  35. Chu, W. H., Dou, Q., Chu, H. L., Wang, H. H., Sung, C. K. and Wang, C. Y. 2015. Research advance on Esteya vermicola, a high potential biocontrol agent of pine wilt disease. Mycol. Prog. 14: 115. https://doi.org/10.1007/s11557-015-1137-9
  36. Clardy, J., Fischbach, M. A. and Walsh, C. T. 2006. New antibiotics from bacterial natural products. Nat. Biotech. 24: 1541-1550. https://doi.org/10.1038/nbt1266
  37. Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, L. and Marrone, P. G. 2013. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl. Environ. Microbiol. 79: 7669-7678. https://doi.org/10.1128/AEM.02365-13
  38. Cronin, D., Moenne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N. and O'Gara, F. 1997. Role of 2,4-Diacetylphloroglucinol in the interactions of the biocontrol Pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl. Environ. Microbiol. 63: 1357-1361.
  39. Cuthbertson, A. G. S., Blackburn, L. F., Northing, P., Luo, W., Cannon, R. J. C. and Walters, K. F. A. 2008. Further compatibility tests of the entomopathogenic fungus Lecanicillium muscarium with conventional insecticide products for control of sweetpotato whitefly, Bemisia tabaci on poinsettia plants. Insect Sci. 15: 355-360. https://doi.org/10.1111/j.1744-7917.2008.00221.x
  40. Cuthbertson, A. G. S., Walters, K. F. and Deppe, C. 2005. Compatibility of the entomopathogenic fungus Lecanicillium muscarium and insecticides for eradication of sweetpotato whitefly, Bemisia tabaci. Mycopathologia 160: 35-41. https://doi.org/10.1007/s11046-005-6835-4
  41. Daborn, P. J., Waterfield, N., Silva, C. P., Au, C. P., Sharma, S. and ffrench-Constant, R. H. 2002. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc. Natl. Acad. Sci. U. S. A. 99: 10742-10747. https://doi.org/10.1073/pnas.102068099
  42. Decraemer, W., Karanastasi, E., Brown, D. and Backeljau, T. 2003. Review of the ultrastructure of the nematode body cuticle and its phylogenetic interpretation. Biol. Rev. Camb. Philos. Soc. 78: 465-510. https://doi.org/10.1017/S1464793102006115
  43. de Freitas, J. R., Banerjee, M. R. and Germida, J. J. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24: 358-364. https://doi.org/10.1007/s003740050258
  44. Degenkolb, T. and Vilcinskas, A. 2016. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl. Microbiol. Biotechnol. 100: 3799-3812. https://doi.org/10.1007/s00253-015-7233-6
  45. Deng, X., Tian, Y., Niu, Q., Xu, X., Shi, H., Zhang, H., Liang, L., Zhang, K. and Huang, X. 2013. The ComP-ComA quorum system is essential for "Trojan horse" like pathogenesis in Bacillus nematocida. PLoS One 8: e76920. https://doi.org/10.1371/journal.pone.0076920
  46. de Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. and Zahner, V. 2004. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl. Environ. Microbiol. 70: 6657-6664. https://doi.org/10.1128/AEM.70.11.6657-6664.2004
  47. Devi, K. K. and Kothamasi, D. 2009. Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiol. Lett. 300: 195-200. https://doi.org/10.1111/j.1574-6968.2009.01782.x
  48. Dong, H., Zhou, X. G., Wang, J., Xu, Y. and Lu, P. 2015. Myrothecium verrucaria strain X-16, a novel parasitic fungus to Meloidogyne hapla. Biol. Control 83: 7-12. https://doi.org/10.1016/j.biocontrol.2014.12.016
  49. Dowling, A. J., Waterfield, N. R., Hares, M. C., Le Goff, G., Streuli, C. H. and ffrench-Constant, R. H. 2007. The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Cell Microbiol. 9: 2470-2484. https://doi.org/10.1111/j.1462-5822.2007.00974.x
  50. Duarte, R. T., Goncalves, K. C., Espinosa, D. J. L., Moreira, L. F., De Bortoli, S. A., Humber, R. A. and Polanczyk, R. A. 2016. Potential of entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. J. Econ. Entomol. 109: 594-601. https://doi.org/10.1093/jee/tow008
  51. Duran, N., Antonio, R. V., Haun, M. and Pilli, R. A. 1994. Biosynthesis of a trypanocide by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 10: 686-690. https://doi.org/10.1007/BF00327960
  52. Fan, W., Idnurm, A., Breger, J., Mylonakis, E. and Heitman, J. 2007. Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect. Immun. 75: 3394-3405. https://doi.org/10.1128/IAI.01977-06
  53. Fang, W., Azimzadeh, P. and St. Leger, R. J. 2012. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr. Opin. Microbiol. 15: 232-238. https://doi.org/10.1016/j.mib.2011.12.012
  54. [FAO, WFP and IFAD] Food and Agriculture Organization of the United Nations, World Food Programme and International Fund for Agricultural Development. 2012. The State of Food Insecurity in the World. FAO, Rome, Italy. pp. 1-63.
  55. Fernandez, C., Rodriiguez-Kabana, R., Warrior, P. and Kloepper, J. W. 2001. Induced soil suppressiveness to a root-knot nematode species by a nematicide. Biol. Control 22: 103-114. https://doi.org/10.1006/bcon.2001.0961
  56. ffrench-Constant, R. and Waterfield, N. 2005. An ABC guide to the bacterial toxin complexes. Adv. Appl. Microbiol. 58C: 169-183.
  57. ffrench-Constant, R. H., Dowling, A. and Waterfield, N. R. 2007. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49: 436-451. https://doi.org/10.1016/j.toxicon.2006.11.019
  58. Fisher, J. R. and Bruck, D. J. 2008. Biology and control of root weevils on berry and nursery crops in Oregon. Acta Hortic. 777: 345-352.
  59. Flury, P., Aellen, N., Ruffner, B., Pechy-Tarr, M., Fataar, S., Metla, Z., Dominguez-Ferreras, A., Bloemberg, G., Frey, J., Goesmann, A., Raaijmakers, J. M., Duffy, B., Hofte, M., Blom, J., Smits, T. H., Keel, C. and Maurhofer, M. 2016. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J. 10: 2527-2542. https://doi.org/10.1038/ismej.2016.5
  60. Gallagher, L. A. and Manoil, C. 2001. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol. 183: 6207-6214. https://doi.org/10.1128/JB.183.21.6207-6214.2001
  61. Gams, W. and Zare, R. 2001. A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia 72: 329-337.
  62. Gao, H., Qi, G., Yin, R., Zhang, H., Li, C. and Zhao, X. 2016. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci. Rep. 6: 28756. https://doi.org/10.1038/srep28756
  63. Glaeser, S. P., Dott, W., Busse, H. J. and Kampfer, P. 2013. Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus. Int. J. Syst. Evol. Microbiol. 63: 2934-2944. https://doi.org/10.1099/ijs.0.049171-0
  64. Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Kohl, J., Marrone, P., Morin, L. and Stewart, A. 2012. Have biopesticides come of age? Trends Biotechnol. 30: 250-258. https://doi.org/10.1016/j.tibtech.2012.01.003
  65. Gonzalez, F., Tkaczuk, C., Dinu, M. M., Fiedler, Z., Vidal, S., Zchori- Fein, E. and Messelink, G. J. 2016. New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J. Pest Sci. 89: 295-311. https://doi.org/10.1007/s10340-016-0751-x
  66. Gorashi, N. E., Tripathi, M., Kalia, V. and Gujar, G. T. 2014. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Indian J. Exp. Biol. 52: 637-649.
  67. Griffitts, J. S., Haslam, S. M., Yang, T., Garczynski, S. F., Mulloy, B., Morris, H., Cremer, P. S., Dell, A., Adang, M. J. and Aroian, R. V. 2005. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922-925. https://doi.org/10.1126/science.1104444
  68. Grimont, F. and Grimont, P. A. D. 1992. The genus Serratia. In: The Prokaryotes, eds. by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt, pp. 2822-2848. Springer, New York, NY, USA.
  69. Gross, H. and Loper, J. E. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26: 1408-1446. https://doi.org/10.1039/b817075b
  70. Guclu, S., Ak, K., Eken, C., Akyol, H., Sekban, R., Beytut, B. and Yildirim, R. 2010. Pathogenicity of Lecanicillium muscarium against Ricania simulans. Bull. Insectology 63: 243-246.
  71. Guo, J., Jing, X., Peng, W. L., Nie, Q., Zhai, Y., Shao, Z., Zheng, L., Cai, M., Li, G., Zuo, H., Zhang, Z., Wang, R. R., Huang, D., Cheng, W., Yu, Z., Chen, L. L. and Zhang, J. 2016. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316. Sci. Rep. 6: 29211. https://doi.org/10.1038/srep29211
  72. Guo, J. P., Zhu, C. Y., Zhang, C. P., Chu, Y. S., Wang, Y. L., Zhang, J. X., Wu, D. K., Zhang, K. Q. and Niu, X. M. 2012. Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J. Am. Chem. Soc. 134: 20306-20309. https://doi.org/10.1021/ja3104044
  73. Gupta, S. and Bhattacharyya, B. 2003. Antimicrotubular drugs binding to vinca domain of tubulin. Mol. Cell. Biochem. 253: 41-47. https://doi.org/10.1023/A:1026045100219
  74. Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319. https://doi.org/10.1038/nrmicro1129
  75. Haase, S., Sciocco-Cap, A. and Romanowski, V. 2015. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 7: 2230-2267. https://doi.org/10.3390/v7052230
  76. Han, X. Y., Han, F. S. and Segal, J. 2008. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int. J. Syst. Evol. Microbiol. 58: 1398-1403. https://doi.org/10.1099/ijs.0.64681-0
  77. Harris, A. K., Williamson, N. R., Slater, H., Cox, A., Abbasi, S., Foulds, I., Simonsen, H. T., Leeper, F. J. and Salmond, G. P. 2004. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150: 3547-3560. https://doi.org/10.1099/mic.0.27222-0
  78. Hashimoto, Y. 2002 Study of the bacteria pathogenic for aphids, isolation of bacteria and identification of insecticidal compound. Rep. Hokkaido Prefect. Agric. Exp. Stn. 102: 1-48.
  79. Hsu, C. H., Nguyen, A. D., Chen, Y. W. and Wang, S. L. 2014. Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source. Res. Chem. Intermed. 40: 2249-2258. https://doi.org/10.1007/s11164-014-1602-0
  80. Hsueh, Y. P., Mahanti, P., Schroeder, F. C. and Sternberg, P. W. 2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 23: 83-86. https://doi.org/10.1016/j.cub.2012.11.035
  81. Huang, X., Tian, B., Niu, Q., Yang, J., Zhang, L. and Zhang, K. 2005a. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res. Microbiol. 156: 719-727. https://doi.org/10.1016/j.resmic.2005.02.006
  82. Huang, X. W., Niu, Q. H., Zhou, W. and Zhang, K. Q. 2005b. Bacillus nematocida sp. nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China. Syst. Appl. Microbiol. 28: 323-327. https://doi.org/10.1016/j.syapm.2005.01.008
  83. Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C. and Mo, M. 2010. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur. J. Plant Pathol. 126: 417-422. https://doi.org/10.1007/s10658-009-9550-z
  84. Huang, Z., Hao, Y., Gao, T., Huang, Y., Ren, S. and Keyhani, N. O. 2016. The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Appl. Microbiol. Biotechnol. 100: 5491-5503. https://doi.org/10.1007/s00253-016-7308-z
  85. Huger, A. M. 2005. The Oryctes virus: its detection, identification and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). J. Invertebr. Pathol. 89: 78-84. https://doi.org/10.1016/j.jip.2005.02.010
  86. Hungria, M., Astolfi-Filho, S., Chueire, L. M., Nicolas, M. F., Santos, E. B., Bulbol, M. R., Souza-Filho, A., Nogueira Assuncao, E., Germano, M. G. and Vasconcelos, A. T. 2005. Genetic characterization of Chromobacterium isolates from black water environments in the Brazilian Amazon. Lett. Appl. Microbiol. 41: 17-23. https://doi.org/10.1111/j.1472-765X.2005.01724.x
  87. Hunter, W. B., Avery, P. B., Pick, D. and Powell, C. A. 2011. Broad spectrum potential of Isaria fumosorosea against insect pests of citrus. Fla. Entomol. 94: 1051-1054. https://doi.org/10.1653/024.094.0444
  88. Hurst, M. R., Glare, T. R., Jackson, T. A. and Ronson, C. W. 2000. Plasmid-located pathogenicity determinants of Serratia en-tomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 182: 5127-5138. https://doi.org/10.1128/JB.182.18.5127-5138.2000
  89. Hwang, K. S., Kim, H. U., Charusanti, P., Palsson, B. O. and Lee, S. Y. 2014. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 32: 255-268. https://doi.org/10.1016/j.biotechadv.2013.10.008
  90. Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858. https://doi.org/10.1094/MPMI.2003.16.10.851
  91. Inci, A., Kilic, E. and Canhilal, R. 2014. Entomopathogens in control of urban pests. Ankara Univ. Vet. Fak. Derg. 61: 155-160.
  92. Ishii, K., Adachi, T., Hamamoto, H. and Sekimizu, K. 2014. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells. J. Biol. Chem. 289: 5876-5888. https://doi.org/10.1074/jbc.M113.544536
  93. Jackson, T. A., Boucias, D. G. and Thaler, J. O. 2001. Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J. Invertebr. Pathol. 78: 232-243. https://doi.org/10.1006/jipa.2002.5078
  94. Jang, J. Y., Choi, Y. H., Shin, T. S., Kim, T. H., Shin, K. S., Park, H. W., Kim, Y. H., Kim, H., Choi, G. J., Jang, K. S., Cha, B., Kim, I. S., Myung, E. J. and Kim, J. C. 2016. Biological control of meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS One 11: e0156230. https://doi.org/10.1371/journal.pone.0156230
  95. Jang, J. Y., Yang, S. Y., Kim, Y. C., Lee, C. W., Park, M. S., Kim, J. C. and Kim, I. S. 2013. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J. Agric. Food Chem. 61: 6786-6791. https://doi.org/10.1021/jf401218w
  96. Jansson, H. B. and Lopez-Llorca, L. V. 2004. Control of nematodes by fungi. In: Fungal Biotechnology in Agriculture, Food and Environmental Applications, ed. by D. K. Arora, pp. 205-215. Marcel Dekker, New York, NY, USA.
  97. Jirakkakul, J., Punya, J., Pongpattanakitshote, S., Paungmoung, P., Vorapreeda, N., Tachaleat, A., Klomnara, C., Tanticharoen, M. and Cheevadhanarak, S. 2008. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology 154: 995-1006. https://doi.org/10.1099/mic.0.2007/013995-0
  98. Ju, S., Lin, J., Zheng, J., Wang, S., Zhou, H. and Sun, M. 2016. Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. Appl. Environ. Microbiol. 82: 2112-2120. https://doi.org/10.1128/AEM.03444-15
  99. Jung, S. C. and Kim, Y. G. 2006. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth, Plutella xylostella. J. Econ. Entomol. 100: 246-250.
  100. Kalbe, C., Marten, P. and Berg, G. 1996. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol. Res. 151: 433-439. https://doi.org/10.1016/S0944-5013(96)80014-0
  101. Kämpfer, P., Busse, H. J. and Scholz, H. C. 2009. Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int. J. Syst. Evol. Microbiol. 59: 2486-2490. https://doi.org/10.1099/ijs.0.008888-0
  102. Kaur, T., Jasrotia, S., Ohri, P. and Manhas, R. K. 2016. Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita. Microbiol. Res. 192: 247-252. https://doi.org/10.1016/j.micres.2016.07.009
  103. Kaur, T. and Manhas, R. K. 2014. Antifungal, insecticidal and plant growth promoting potential of Streptomyces hydrogenans DH16. J. Basic Microbiol. 54: 1175-1185. https://doi.org/10.1002/jobm.201300086
  104. Kaur, T., Vasudev, A., Sohal, S. K. and Manhas, R. K. 2014. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 14: 227. https://doi.org/10.1186/s12866-014-0227-1
  105. Kergunteuil, A., Bakhtiari, M., Formenti, L., Xiao, Z., Defossez, E. and Rasmann, S. 2016. Biological control beneath the feet: a review of crop protection against insect root herbivores. Insects 7: 70. https://doi.org/10.3390/insects7040070
  106. Kershaw, M. J., Moorhouse, E. R., Bateman, R., Reynolds, S. E. and Charnley, A. K. 1999. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J. Invertebr. Pathol. 74: 213-223. https://doi.org/10.1006/jipa.1999.4884
  107. Khan, A., Williams, K., Molloy, M. P. and Nevalainen, H. 2003. Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein Expr. Purif. 32: 210-220. https://doi.org/10.1016/j.pep.2003.07.007
  108. Khan, A., Williams, K. L. and Nevalainen, H. K. M. 2004. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol. Control 31: 346-352. https://doi.org/10.1016/j.biocontrol.2004.07.011
  109. Khan, A., Williams, K. L. and Nevalainen, H. K. M. 2006. Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. BioControl 51: 643-658. https://doi.org/10.1007/s10526-005-4241-y
  110. Khan, S., Nadir, S., Lihua, G., Xu, J., Holmes, K. A. and Dewen, Q. 2016. Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system. J. Invertebr. Pathol. 133: 87-94. https://doi.org/10.1016/j.jip.2015.11.010
  111. Kiewnick, S. and Sikora, R. A. 2006. Biological control of the rootknot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol. Control 38: 179-187. https://doi.org/10.1016/j.biocontrol.2005.12.006
  112. Kil, Y. J., Seo, M. J., Kang, D. K., Oh, S. N., Cho, H. S., Youn, Y. N., Yasunaga-Aoki, C. and Yu, Y. M. 2014. Effects of Enterobacteria (Burkholderia sp.) on development of Riptortus pedestris. J. Fac. Agric. Kyushu Univ. 59: 77-84.
  113. Kim, T. Y., Jang, J. Y., Jeon, S. J., Lee, H. W., Bae, C. H., Yeo, J. H., Lee, H. B., Kim, I. S., Park, H. W. and Kim, J. C. 2016. Nematicidal activity of kojic acid produced by Aspergillus oryzae against Meloidogyne incognita. J. Microbiol. Biotechnol. 26: 1383-1391. https://doi.org/10.4014/jmb.1603.03040
  114. Kirienko, N. V., Kirienko, D. R., Larkins-Ford, J., Wählby, C., Ruvkun, G. and Ausubel, F. M. 2013. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13: 406-416. https://doi.org/10.1016/j.chom.2013.03.003
  115. Koga-Ban, Y., Niki, T., Nagamura, Y., Sasaki, T. and Minobe, Y. 1995. cDNA sequences of three kinds of beta-tubulins from rice. DNA Res. 2: 21-26. https://doi.org/10.1093/dnares/2.1.21
  116. Kong, H., Shimosaka, M., Ando, Y., Nishiyama, K., Fujii, T. and Miyashita, K. 2001. Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol. Ecol. 37: 135-141. https://doi.org/10.1111/j.1574-6941.2001.tb00861.x
  117. Kong, L., Zhu, S., Zhu, L., Xie, H., Wei, K., Yan, T., Wang, J., Wang, J., Wang, F. and Sun, F. 2014. Colonization of Alcaligenes faecalis strain JBW4 in natural soils and its detoxification of endosulfan. Appl. Microbiol. Biotechnol. 98: 1407-1416. https://doi.org/10.1007/s00253-013-5033-4
  118. Kroemer, J. A., Bonning, B. C. and Harrison, R. L. 2015. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses. Viruses 7: 422-455. https://doi.org/10.3390/v7010422
  119. Kubatova, A., Novotny, D., Prasil, K. and Mracek, Z. 2000. The nematophagous hyphomycete Esteya vermicola found in the Czech Republic. Czech Mycol. 52: 227-235.
  120. Kulkarni, R. D., Thon, M. R., Pan, H. and Dean, R. A. 2005. Novel Gprotein- coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6: R24. https://doi.org/10.1186/gb-2005-6-3-r24
  121. Kulkarni, S. 2015. Commercialisation of microbial biopesticides for the management of pests and diseases. In: Recent Advances in the Diagnosis and Management of Plant Diseases, ed. by L. P. Awasthi, pp. 1-10. Springer, New Delhi, India.
  122. Kupferschmied, P., Chai, T., Flury, P., Blom, J., Smits, T. H., Maurhofer, M. and Keel, C. 2016. Specific surface glycan decorations enable antimicrobial peptide resistance in plant-beneficial Pseudomonads with insect-pathogenic properties. Environ. Microbiol. 18: 4265-4281. https://doi.org/10.1111/1462-2920.13571
  123. Kupferschmied, P., Maurhofer, M. and Keel, C. 2013. Promise for plant pest control: root-associated Pseudomonads with insecticidal activities. Front. Plant Sci. 4: 287.
  124. Kupferschmied, P., Pechy-Tarr, M., Imperiali, N., Maurhofer, M. and Keel, C. 2014. Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens. PLoS Pathog. 10: e1003964. https://doi.org/10.1371/journal.ppat.1003964
  125. Kwak, K. W., Han, M. S., Nam, S. H., Choi, J. Y., Lee, S. H., Choi, Y. C. and Park, K. H. 2014. Detection of insect pathogen Serratia marcescens in Protaetia brevitarsis seulensis (Kolbe) from Korea. Int. J. Indust. Entomol. 28: 25-31. https://doi.org/10.7852/ijie.2014.28.2.25
  126. Kwak, Y., Khan, A. R. and Shin, J. H. 2015. Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode. J. Biotechnol. 193: 1-2. https://doi.org/10.1016/j.jbiotec.2014.11.002
  127. Lacey, L. A. and Georgis, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 44: 218-225.
  128. Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M. and Goettel, M. S. 2015. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132: 1-41. https://doi.org/10.1016/j.jip.2015.07.009
  129. Lam, J. S., Taylor, V. L., Islam, S. T., Hao, Y. and Kocincova, D. 2011. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol. 2: 118.
  130. Larriba, E., Jaime, M. D., Carbonell-Caballero, J., Conesa, A., Dopazo, J., Nislow, C., Martin-Nieto, J. and Lopez-Llorca, L. V. 2014. Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genet. Biol. 65: 69-80. https://doi.org/10.1016/j.fgb.2014.02.002
  131. Lebrigand, K., He, L. D., Thakur, N., Arguel, M. J., Polanowska, J., Henrissat, B., Record, E., Magdelenat, G., Barbe, V., Raffaele, S., Barbry, P. and Ewbank, J. J. 2016. Comparative genomic analysis of Drechmeria coniospora reveals core and specific genetic requirements for fungal endoparasitism of nematodes. PLoS Genet. 12: e1006017. https://doi.org/10.1371/journal.pgen.1006017
  132. Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62: 746-751. https://doi.org/10.1007/s00284-010-9779-y
  133. Lee, Y. S. and Kim, K. Y. 2016. Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J. Phytopathol. 164: 29-39. https://doi.org/10.1111/jph.12421
  134. Lerouge, I. and Vanderleyden, J. 2002. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26: 17-47. https://doi.org/10.1111/j.1574-6976.2002.tb00597.x
  135. Li, G., Zhang, K., Xu, J., Dong, J. and Liu, Y. 2007a. Nematicidal substances from fungi. Recent Pat. Biotechnol. 1: 212-233. https://doi.org/10.2174/187220807782330165
  136. Li, G. H. and Zhang, K. Q. 2014. Nematode-toxic fungi and their nematicidal metabolites. In: Nematode-Trapping Fungi, eds. by K. Q. Zhang and K. D. Hyde, pp. 313-375. Springer, Dordrecht, Netherlands.
  137. Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., Huang, X. and Zhang, K. Q. 2015. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plantparasitic nematodes. Annu. Rev. Phytopathol. 53: 67-95. https://doi.org/10.1146/annurev-phyto-080614-120336
  138. Li, X. Q., Wei, J. Z., Tan, A. and Aroian, R. V. 2007b. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol. J. 5: 455-464. https://doi.org/10.1111/j.1467-7652.2007.00257.x
  139. Lian, L. H., Tian, B. Y., Xiong, R., Zhu, M. Z., Xu, J. and Zhang, K. Q. 2007. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett. Appl. Microbiol. 45: 262-269. https://doi.org/10.1111/j.1472-765X.2007.02184.x
  140. Liehl, P., Blight, M., Vodovar, N., Boccard, F. and Lemaitre, B. 2006. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2: e56. https://doi.org/10.1371/journal.ppat.0020056
  141. Lin, F., Ye, J., Wang, H., Zhang, A. and Zhao, B. 2013. Host deception: predaceous fungus, Esteya vermicola, entices pine wood nematode by mimicking the scent of pine tree for nutrient. PLoS One 8: e71676. https://doi.org/10.1371/journal.pone.0071676
  142. Liou, J. Y., Shih, J. Y. and Tzean, S. S. 1999. Esteya, a new nematophagous genus from Taiwan, attacking the pinewood nematode (Bursaphelenchus xylophilus). Mycol. Res. 103: 242-248. https://doi.org/10.1017/S0953756298006984
  143. Liu, H., Qin, S., Wang, Y., Li, W. and Zhang, J. 2008. Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World J. Microbiol. Biotechnol. 24: 2243-2248. https://doi.org/10.1007/s11274-008-9736-0
  144. Liu, J. R., Lin, Y. D., Chang, S. T., Zeng, Y. F. and Wang, S. L. 2010. Molecular cloning and characterization of an insecticidal toxin from Pseudomonas taiwanensis. J. Agric. Food Chem. 58: 12343-12349. https://doi.org/10.1021/jf103604r
  145. Liu, K., Zhang, W., Lai, Y., Xiang, M., Wang, X., Zhang, X. and Liu, X. 2014. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics 15: 114. https://doi.org/10.1186/1471-2164-15-114
  146. Liu, X., Xiang, M. and Che, Y. 2009. The living strategy of nematophagous fungi. Mycoscience 50: 20-25. https://doi.org/10.1007/S10267-008-0451-3
  147. Loper, J. E., Henkels, M. D., Rangel, L. I., Olcott, M. H., Walker, F. L., Bond, K. L., Kidarsa, T. A., Hesse, C. N., Sneh, B., Stockwell, V. O. and Taylor, B. J. 2016. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ. Microbiol. 18: 3509-3521. https://doi.org/10.1111/1462-2920.13369
  148. Lopez-Llorca, L. V. 1990. Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can. J. Microbiol. 36: 530-537. https://doi.org/10.1139/m90-093
  149. Lopez-Llorca, L. V., Macia-Vicente, J. G. and Jansson, H. B. 2008. Mode of action and interactions of nematophagous fungi. In: Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes, eds. by A. Ciancio and K. G. Mukerji, pp. 51-76. Springer, Dordrecht, Netherlands.
  150. Luo, H., Liu, Y., Fang, L., Li, X., Tang, N. and Zhang, K. 2007. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl. Environ. Microbiol. 73: 3916-3923. https://doi.org/10.1128/AEM.02770-06
  151. Ma, Z., Geudens, N., Kieu, N. P., Sinnaeve, D., Ongena, M., Martins, J. C. and Hofte, M. 2016. Biosynthesis, chemical structure and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front. Microbiol. 7: 382.
  152. Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. and Ausubel, F. M. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96: 47-56. https://doi.org/10.1016/S0092-8674(00)80958-7
  153. Malekan, N., Hatami, B., Ebadi, R., Akhavan, A. and Radjabi, R. 2015. Evaluation of entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium on different nymphal stages of greenhouse whitefly Trialeurodes vaporariorum in greenhouse conditions. Biharean Biologist 9: 108-112.
  154. Maniania, N. K., Ekesi, S., Kungu, M. M., Salifu, D. and Srinivasan, R. 2016. The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato. Crop Protect. 90: 49-53. https://doi.org/10.1016/j.cropro.2016.08.016
  155. Mankau, R., Imbriani, J. L. and Bell, A. H. 1976. SEM observations on nematode cuticle penetration by Bacillus penetrans. J. Nematol. 8: 179-181.
  156. Mark, G., Morrissey, J. P., Higgins, P. and O'gara, F. 2006. Molecularbased strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 56: 167-177. https://doi.org/10.1111/j.1574-6941.2006.00056.x
  157. Martin, P. A., Blackburn, M. and Shropshire, A. D. 2004. Two new bacterial pathogens of Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 97: 774-780. https://doi.org/10.1093/jee/97.3.774
  158. Martin, P. A., Gundersen-Rindal, D., Blackburn, M. and Buyer, J. 2007b. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int. J. Syst. Evol. Microbiol. 57: 993-999. https://doi.org/10.1099/ijs.0.64611-0
  159. Martin, P. A., Hirose, E. and Aldrich, J. R. 2007a. Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 100: 680-684. https://doi.org/10.1093/jee/100.3.680
  160. Martin, P. A. W., Shropshire, A. D. S., Gundersen-Rindal, D. E. and Blackburn, M. B. 2007c. Chromobacterium subtsugae sp. nov. and use for control of insect pests. U.S. Patent US20070172463 A1.
  161. Mascarin, G. M. and Jaronski, S. T. 2016. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 32: 177. https://doi.org/10.1007/s11274-016-2131-3
  162. Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G. and Thomashow, L. S. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183: 6454-6465. https://doi.org/10.1128/JB.183.21.6454-6465.2001
  163. McSpadden Gardener, B. B. 2007. Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology 97: 221-226. https://doi.org/10.1094/PHYTO-97-2-0221
  164. Meerupati, T. Andersson, K. M., Friman, E., Kumar, D., Tunlid, A. and Ahren, D. 2013. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet. 9: e1003909. https://doi.org/10.1371/journal.pgen.1003909
  165. Mendoza, A. R., Kiewnick, S. and Sikora, R. A. 2008. In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci. Technol. 18: 377-389. https://doi.org/10.1080/09583150801952143
  166. Menezes, C. B., Tonin, M. F., Correa, D. B., Parma, M., de Melo, I. S., Zucchi, T. D., Destefano, S. A. and Fantinatti-Garboggini, F. 2015. Chromobacterium amazonense sp. nov. isolated from water samples from the Rio Negro, Amazon, Brazil. Antonie van Leeuwenhoek 107: 1057-1063. https://doi.org/10.1007/s10482-015-0397-3
  167. Meyer, S. L., Everts, K. L., Gardener, B. M., Masler, E. P., Abdelnabby, H. M. and Skantar, A. M. 2016. Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon. J. Nematol. 48: 43-53. https://doi.org/10.21307/jofnem-2017-008
  168. Meyer, S. L., Halbrendt, J. M., Carta, L. K., Skantar, A. M., Liu, T., Abdelnabby, H. M. and Vinyard, B. T. 2009. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterialfeeding nematodes. J. Nematol. 41: 274-280.
  169. Mfuti, D. K., Niassy, S., Subramanian, S., du Plessis, H., Ekesi, S. and Maniania, N. K. 2017. Lure and infect strategy for application of entomopathogenic fungus for the control of bean flower thrips in cowpea. Biol. Control 107: 70-76. https://doi.org/10.1016/j.biocontrol.2017.01.011
  170. Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V. and Alves, P. M. 2012. Toward system-level understanding of baculovirushost cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front. Microbiol. 3: 391.
  171. Moore, S. D., Kirkman, W., Richards, G. I. and Stephen, P. R. 2015. The Cryptophlebia leucotreta granulovirus-10 years of commercial field use. Viruses 7: 1284-1312. https://doi.org/10.3390/v7031284
  172. Moosavi, M. R. and Zare, R. 2012. Fungi as biological control agents of plant-parasitic nematodes. In: Plant Defence: Biological Control, eds. by J. M. Merillon and K. G. Ramawat, pp. 67-107. Springer, Dordrecht, Netherlands.
  173. Morita, Y., Matsumura, E., Okabe, T., Shibata, M., Sugiura, M., Ohe, T., Tsujibo, H., Ishida, N. and Inamori, Y. 2003. Biological activity of tropolone. Biol. Pharm. Bull. 26: 1487-1490. https://doi.org/10.1248/bpb.26.1487
  174. Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44: 257-289. https://doi.org/10.1146/annurev.ento.44.1.257
  175. Moscardi, F., de Souza, M. L., de Castro, M. E. B., Lara Moscardi, M. and Szewczyk, B. 2011. Baculovirus pesticides: present state and future perspectives. In: Microbes and Microbial Technology: Agricultural and Environmental Applications, eds. by I. Ahmad, F. Ahmad and J. Pichtel, pp. 415-445. Springer, New York, NY, USA.
  176. Nakai, M. 2009. Biological control of tortricidae in tea fields in Japan using insect viruses and parasitoids. Virol. Sin. 24: 323-332. https://doi.org/10.1007/s12250-009-3057-9
  177. Neidig, N., Paul, R. J., Scheu, S. and Jousset, A. 2011. Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb. Ecol. 61: 853-859. https://doi.org/10.1007/s00248-011-9821-z
  178. Neung, S., Nguyen, X. H., Naing, K. W., Lee, Y. S. and Kim, K. Y. 2014. Insecticidal potential of Paenibacillus elgii HOA73 and its combination with organic sulfur pesticide on diamondback moth, Plutella xylostella. J. Korean Soc. Appl. Biol. Chem. 57: 181-186. https://doi.org/10.1007/s13765-013-4273-4
  179. Nishiwaki, H., Ito, K., Otsuki, K., Yamamoto, H., Komai, K. and Matsuda, K. 2004. Purification and functional characterization of insecticidal sphingomyelinase C produced by Bacillus cereus. Eur. J. Biochem. 271: 601-606. https://doi.org/10.1111/j.1432-1033.2003.03962.x
  180. Niu, Q., Huang, X., Zhang, L., Lian, L., Li, Y., Li, J., Yang, J. and Zhang, K. 2007. Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida. Appl. Microbiol. Biotechnol. 75: 141-148. https://doi.org/10.1007/s00253-006-0794-7
  181. Niu, Q., Huang, X., Zhang, L., Xu, J., Yang, D., Wei, K., Niu, X., An, Z., Bennett, J. W., Zou, C., Yang, J. and Zhang, K. Q. 2010. A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc. Natl. Acad. Sci. U. S. A. 107: 16631-16636. https://doi.org/10.1073/pnas.1007276107
  182. Noel, G. R., Atibalentja, N. and Domier, L. L. 2005. Emended description of Pasteuria nishizawae. Int. J. Syst. Evol. Microbiol. 55: 1681-1685. https://doi.org/10.1099/ijs.0.63174-0
  183. Nordbring-Hertz, B., Jansson, H. B. and Tunlid, A. 2011. Nematophagous fungi. eLS doi: 10.1002/9780470015902.a0000374.pub3.
  184. Nunez-Valdez, M. E., Calderon, M. A., Aranda, E., Hernandez, L., Ramirez-Gama, R. M., Lina, L., Rodriguez-Segura, Z., Gutierrez Mdel, C. and Villalobos, F. J. 2008. Identification of a putative Mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Appl. Environ. Microbiol. 74: 802-810. https://doi.org/10.1128/AEM.01074-07
  185. Oka, Y., Chet, I. and Spiegel, Y. 1993. Control of the rootknot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Sci. Technol. 3: 115-126. https://doi.org/10.1080/09583159309355267
  186. Okazaki, S., Sugawara, M. and Minamisawa, K. 2004. Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizobitoxine biosynthesis. Appl. Environ. Microbiol. 70: 535-541. https://doi.org/10.1128/AEM.70.1.535-541.2004
  187. Olcott, M. H., Henkels, M. D., Rosen, K. L., Walker, F. L., Sneh, B., Loper, J. E. and Taylor, B. J. 2010. Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 5: e12504. https://doi.org/10.1371/journal.pone.0012504
  188. Oliveira, D. F., Campos, V. P., Amaral, D. R., Nunes, A. S., Pantaleão, J. A. and Costa, D. A. 2007. Selection of rhizobacteria able to produce metabolites active against Meloidogyne exigua. Eur. J. Plant Pathol. 119: 477-479. https://doi.org/10.1007/s10658-007-9176-y
  189. Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. https://doi.org/10.1016/j.tim.2007.12.009
  190. Park, H. I. and Ming, L. J. 2002. Mechanistic studies of the astacinlike Serratia metalloendopeptidase serralysin: highly active (>2000%) Co(II) and Cu(II) derivatives for further corroboration of a "metallotriad" mechanism. J. Biol. Inorg. Chem. 7: 600-610. https://doi.org/10.1007/s00775-002-0338-2
  191. Park, J. O., Hargreaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L. and Sivasithamparam, K. 2004. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett. Appl. Microbiol. 38: 271-276. https://doi.org/10.1111/j.1472-765X.2004.01488.x
  192. Patil, N. G., Kadam, M. S., Patil, V. R. and Chincholkar, S. B. 2013. Insecticidal properties of water diffusible prodigiosin produced by Serratia nematodiphila 213C. Curr. Trends Biotechnol. Pharm. 7: 773-781.
  193. Pechy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., Donahue, K. M., Grunder, J., Loper, J. E. and Keel, C. 2008. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ. Microbiol. 10: 2368-2386. https://doi.org/10.1111/j.1462-2920.2008.01662.x
  194. Persidis, A., Lay, J. G., Manousis, T., Bishop, A. H. and Ellar, D. J. 1991. Characterisation of potential adhesins of the bacterium Pasteuria penetrans and of putative receptors on the cuticle of Meloidogyne incognita, a nematode host. J. Cell Sci. 100: 613-622.
  195. Phung, le T., Trimble, W. L., Meyer, F., Gilbert, J. A. and Silver, S. 2012. Draft genome sequence of Alcaligenes faecalis subsp. faecalis NCIB 8687(CCUG 2071). J. Bacteriol. 194: 5153. https://doi.org/10.1128/JB.01185-12
  196. Pimentel, D. 2009. Environmental and economic costs of the application of pesticides primarily in the United States. In: Integrated Pest Management: Innovation-Development Process, eds. by R. Peshin and A. K. Dhawan, pp. 89-111. Springer, Dordrecht, Netherlands.
  197. Pitterna, T., Cassayre, J., Huter, O. F., Jung, P. M., Maienfisch, P., Kessabi, F. M., Quaranta, L. and Tobler, H. 2009. New ventures in the chemistry of avermectins. Bioorg. Med. Chem. 17: 4085-4095. https://doi.org/10.1016/j.bmc.2008.12.069
  198. Poopathi, S., Mani, C., Thirugnanasambantham, K., Praba, V. L., Ahangar, N. A. and Balagangadharan, K. 2014. Identification and characterization of a novel marine Bacillus cereus for mosquito control. Parasitol. Res. 113: 323-332. https://doi.org/10.1007/s00436-013-3658-y
  199. Popham, H. J., Nusawardani, T. and Bonning, B. C. 2016. Introduction to the use of Baculoviruses as biological insecticides. Methods Mol. Biol. 1350: 383-392.
  200. Pramer, D. and Stoll, N. R. 1959. Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science 129: 966-967. https://doi.org/10.1126/science.129.3354.966
  201. Prasanna, L., Eijsink, V. G., Meadow, R. and Gaseidnes, S. 2013. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl. Microbiol. Biotechnol. 97: 1601-1611. https://doi.org/10.1007/s00253-012-4019-y
  202. Quesada-Moraga, E., Maranhao, E. A. A., Valverde-Garcia, P. and Santiago-Alvarez, C. 2006. Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements and toxicogenic activity. Biol. Control 36: 274-287. https://doi.org/10.1016/j.biocontrol.2005.09.022
  203. Raetz, C. R. and Whitfield, C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  204. Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M. and Yandigeri, M. S. 2014. Management of insect pests by microorganisms. Proc. Indian Nat. Sci. Acad. 80: 455-471. https://doi.org/10.16943/ptinsa/2014/v80i2/3
  205. Ramezani, M. M., Mahdikhani, M. E., Baghaee, R. S. and Rouhani, H. 2014. The first report of Bacillus pumilus influence against Meloidogyne javanica in Iran. J. Crop Prot. 3: 105-112.
  206. Ramle, M., Wahid, M. B., Norman, K., Glare, T. R. and Jackson, T. A. 2005. The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia. J. Invertebr. Pathol. 89: 85-90. https://doi.org/10.1016/j.jip.2005.02.009
  207. Rashad, F. M., Fathy, H. M., El-Zayat, A. S. and Elghonaimy, A. M. 2015. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol. Res. 175: 34-47. https://doi.org/10.1016/j.micres.2015.03.002
  208. Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D. and Crickmore, N. 2010. Bacillus thuringiensis: an impotent pathogen? Trends Microbiol. 18: 189-194. https://doi.org/10.1016/j.tim.2010.02.006
  209. Regev, A., Rivkin, H., Inceoglu, B., Gershburg, E., Hammock, B. D., Gurevitz, M. and Chejanovsky, N. 2003. Further enhancement of baculovirus insecticidal efficacy with scorpion toxins that interact cooperatively. FEBS Lett. 537: 106-110. https://doi.org/10.1016/S0014-5793(03)00104-2
  210. Rehfuss, M. and Urban, J. 2005. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst. Appl. Microbiol. 28: 421-429. https://doi.org/10.1016/j.syapm.2005.03.003
  211. Roberts, D. W. and St. Leger, R. J. 2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv. Appl. Microbiol. 54: 1-70.
  212. ROMPP Online (2015 onwards). Version 4.0. Georg Thieme Verlag Suttgart. URL https://roempp.thieme.de/roempp4.0/do/Welcome.do [14 July 2015].
  213. Rowley, D. L., Popham, H. J. and Harrison, R. L. 2011. Genetic variation and virulence of nucleopolyhedroviruses isolated worldwide from the heliothine pests Helicoverpa armigera, Helicoverpa zea and Heliothis virescens. J. Invertebr. Pathol. 107: 112-126. https://doi.org/10.1016/j.jip.2011.03.007
  214. Ruanpanun, P., Laatsch, H., Tangchitsomkid, N. and Lumyong, S. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol. Biotechnol. 27: 1373-1380. https://doi.org/10.1007/s11274-010-0588-z
  215. Ruffner, B., Pechy-Tarr, M., Hofte, M., Bloemberg, G., Grunder, J., Keel, C. and Maurhofer, M. 2015. Evolutionary patchwork of an insecticidal toxin shared between plant-associated Pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics 16: 609. https://doi.org/10.1186/s12864-015-1763-2
  216. Ruffner, B., Pechy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., Keel, C. and Maurhofer, M. 2013. Oral insecticidal activity of plant-associated Pseudomonads. Environ. Microbiol. 15: 751-763. https://doi.org/10.1111/j.1462-2920.2012.02884.x
  217. Ruiu, L. 2013. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4: 476-492. https://doi.org/10.3390/insects4030476
  218. Ruiu, L. 2015. Insect pathogenic bacteria in integrated pest management. Insects 6: 352-367. https://doi.org/10.3390/insects6020352
  219. Safavi, S. A. 2013. In vitro and in vivo induction and characterization of Beauvericin isolated from Beauveria bassiana and its bioassay on Galleria mellonella larvae. J. Agric. Sci. Tech. 15: 1-10.
  220. Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T. and Christou, P. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283-300. https://doi.org/10.1111/j.1467-7652.2011.00595.x
  221. Sayre, R. M. and Wergin, W. P. 1977. Bacterial parasite of a plant nematode: morphology and ultrastructure. J. Bacteriol. 129: 1091-1101.
  222. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
  223. Schouteden, N., De Waele, D., Panis, B. and Vos, C. M. 2015. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front. Microbiol. 6: 1280.
  224. Segers, R., Butt, T. M., Kerry, B. R. and Peberdy, J. F. 1994. The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology 140: 2715-2723. https://doi.org/10.1099/00221287-140-10-2715
  225. Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N. and Samiyappan, R. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl 59: 345-355. https://doi.org/10.1007/s10526-014-9569-8
  226. Sharma, A., Thakur, D. R., Kanwar, S. and Chandla, V. K. 2013. Diversity of entomopathogenic bacteria associated with the white grub, Brahmina coriacea. J. Pest Sci. 86: 261-273. https://doi.org/10.1007/s10340-012-0459-5
  227. Shida, O., Takagi, H., Kadowaki, K. and Komagata, K. 1996. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 46: 939-946. https://doi.org/10.1099/00207713-46-4-939
  228. Shim, H. J., Choi, J. Y., Wang, Y., Tao, X. Y., Liu, Q., Roh, J. Y., Kim, J. S., Kim, W. J., Woo, S. D., Jin, B. R. and Je, Y. H. 2013. NeuroBactrus, a novel, highly effective, and environmentally friendly recombinant baculovirus insecticide. Appl. Environ. Microbiol. 79: 141-149. https://doi.org/10.1128/AEM.02781-12
  229. Siddiqui, I. A., Haas, D. and Heeb, S. 2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl. Environ. Microbiol. 71: 5646-5649. https://doi.org/10.1128/AEM.71.9.5646-5649.2005
  230. Siddiqui, I. A. and Shaukat, S. S. 2003a. Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its geneticallymodified derivatives. J. Phytopathol. 151: 231-238. https://doi.org/10.1046/j.1439-0434.2003.00716.x
  231. Siddiqui, I. A. and Shaukat, S. S. 2003b. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoro-glucinol. Soil Biol. Biochem. 35: 1615-1623. https://doi.org/10.1016/j.soilbio.2003.08.006
  232. Siddiqui, I. A. and Shaukat, S. S. 2004a. Suppression of Meloidogyne incognita by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives: II. The influence of sodium chloride. Nematol. Mediterr. 32: 127-130.
  233. Siddiqui, I. A. and Shaukat, S. S. 2004b. Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J. Phytopathol. 152: 48-54. https://doi.org/10.1046/j.1439-0434.2003.00800.x
  234. Siddiqui, I. A. and Shaukat, S. S. 2004c. Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett. Appl. Microbiol. 38: 169-175. https://doi.org/10.1111/j.1472-765X.2003.01481.x
  235. Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H. and Khan, A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 22: 641-650. https://doi.org/10.1007/s11274-005-9084-2
  236. Silby, M. W., Winstanley, C., Godfrey, S. A., Levy, S. B. and Jackson, R. W. 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35: 652-680. https://doi.org/10.1111/j.1574-6976.2011.00269.x
  237. Singh, A. K., Singh, A. and Joshi, P. 2016. Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. Int. J. Pest Manag. 62: 222-227. https://doi.org/10.1080/09670874.2016.1167267
  238. Slininger, P. J. and Shea-Wilbur, M. A. 1995. Liquid-culture pH, temperature and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotechnol. 43: 794-800. https://doi.org/10.1007/BF02431910
  239. Soby, S. D., Gadagkar, S. R., Contreras, C. and Caruso, F. L. 2013. Chromobacterium vaccinii sp. nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait.) bogs and irrigation ponds. Int. J. Syst. Evol. Microbiol. 63: 1840-1846. https://doi.org/10.1099/ijs.0.045161-0
  240. St. Leger, R. J., Wang, C. and Fang, W. 2011. New perspectives on insect pathogens. Fungal Biol. Rev. 25: 84-88. https://doi.org/10.1016/j.fbr.2011.04.005
  241. Stehle, S. and Schulz, R. 2015. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl. Acad. Sci. U. S. A. 112: 5750-5755. https://doi.org/10.1073/pnas.1500232112
  242. Suarez, B., Rey, M., Castillo, P., Monte, E. and Llobell, A. 2004. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biotechnol. 65: 46-55.
  243. Sugar, D. R., Murfin, K. E., Chaston, J. M. Andersen, A. W., Richards, G. R., deLeon, L., Baum, J. A., Clinton, W. P., Forst, S., Goldman, B. S., Krasomil-Osterfeld, K. C., Slater, S., Stock, S. P. and Goodrich-Blair, H. 2012. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environ. Microbiol. 14: 924-939. https://doi.org/10.1111/j.1462-2920.2011.02663.x
  244. Sun, M. H., Gao, L., Shi, Y. X., Li, B. J. and Liu, X. Z. 2006. Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J. Invertebr. Pathol. 93: 22-28. https://doi.org/10.1016/j.jip.2006.03.006
  245. Sun, X. 2015. History and current status of development and use of viral insecticides in China. Viruses 7: 306-319. https://doi.org/10.3390/v7010306
  246. Suryawanshi, R. K., Patil, C. D., Borase, H. P., Salunke, B. K. and Patil, S. V. 2014. Studies on production and biological potential of prodigiosin by Serratia marcescens. Appl. Biochem. Biotechnol. 173: 1209-1221. https://doi.org/10.1007/s12010-014-0921-3
  247. Szabo, M., Csepregi, K., Galber, M., Viranyi, F. and Fekete, C. 2012. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol. Control 63: 121-128. https://doi.org/10.1016/j.biocontrol.2012.06.013
  248. Takeshita, K., Matsuura, Y., Itoh, H., Navarro, R., Hori, T., Sone, T., Kamagata, Y., Mergaert, P. and Kikuchi, Y. 2015. Burkholderia of plant-beneficial group are symbiotically associated with bordered plant bugs (Heteroptera: Pyrrhocoroidea: Largidae). Microbes Environ. 30: 321-329. https://doi.org/10.1264/jsme2.ME15153
  249. Tao, K., Long, Z., Liu, K., Tao, Y. and Liu, S. 2006. Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3. Curr. Microbiol. 52: 45-49. https://doi.org/10.1007/s00284-005-0089-8
  250. Terefe, M., Tefera, T. and Sakhuja, P. K. 2009. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J. Invertebr. Pathol. 100: 94-99. https://doi.org/10.1016/j.jip.2008.11.004
  251. Tian, B., Li, N., Lian, L., Liu, J., Yang, J. and Zhang, K. Q. 2006. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch. Microbiol. 186: 297-305. https://doi.org/10.1007/s00203-006-0145-1
  252. Tian, B., Yang, J. and Zhang, K. Q. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action and future prospects. FEMS Microbiol. Ecol. 61: 197-213. https://doi.org/10.1111/j.1574-6941.2007.00349.x
  253. Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J. and Jansson, H. B. 2002. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet. Biol. 35: 67-78. https://doi.org/10.1006/fgbi.2001.1312
  254. Trent, M. S., Stead, C. M., Tran, A. X. and Hankins, J. V. 2006. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 12: 205-223.
  255. Tseng, M. N., Chung, P. C. and Tzean, S. S. 2011. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. App. Environ. Microbiol. 77: 4508-4519. https://doi.org/10.1128/AEM.02033-10
  256. Tucker, S. L. and Talbot, N. J. 2001. Surface attachment and prepenetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39: 385-417. https://doi.org/10.1146/annurev.phyto.39.1.385
  257. Tulloch, M. 1972. The Genus Myrothecium Tode ex Fr. Mycological Papers, No. 130. Commonwealth Mycological Institute, Kew, UK. pp. 1-42.
  258. Turner, M. J. and Schaeffer, J. M. 1989. Mode of action of Ivermectin. In: Ivermectin and Abamectin, ed. by W. C. Campbell, pp. 73-88. Springer, New York, NY, USA.
  259. Twomey, U., Warrior, P., Kerry, B. R. and Perry, R. N. 2000. Effects of the biological nematicide, DiTera, on hatching of Globodera rostochiensis and G. pallida. Nematology 2: 355-362. https://doi.org/10.1163/156854100509114
  260. Vachon, V., Laprade, R. and Schwartz, J. L. 2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J. Invertebr. Pathol. 111: 1-12. https://doi.org/10.1016/j.jip.2012.05.001
  261. Van Loon, L. C. and Bakker, P. A. H. M. 2006. Induced systemic resistance as a mechanism of disease suppression by Rhizobacteria. In: PGPR: Biocontrol and Biofertilization, ed. by Z. A. Siddiqui, pp. 39-66. Springer, Dordrecht, Netherlands.
  262. Van Rij, E. T., Wesselink, M., Chin-A-Woeng, T. F., Bloemberg, G. V. and Lugtenberg, B. J. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol. Plant-Microbe Interact. 17: 557-566. https://doi.org/10.1094/MPMI.2004.17.5.557
  263. Vega, F. E., Posada, F., Catherine Aime, M., Pava-Ripoll, M., Infante, F. and Rehner, S. A. 2008. Entomopathogenic fungal endophytes. Biol. Control 46: 72-82. https://doi.org/10.1016/j.biocontrol.2008.01.008
  264. Veresoglou, S. D. and Rillig, M. C. 2012. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol. Lett. 8: 214-217. https://doi.org/10.1098/rsbl.2011.0874
  265. Vos, C., Claerhout, S., Mkandawire, R., Panis, B., De Waele, D. and Elsen, A. 2012. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354: 335-345. https://doi.org/10.1007/s11104-011-1070-x
  266. Wachira, P. M., Kimenju, J. W. Okoth, S. A. and Mibey, R. K. 2009. Stimulation of nematode-destroying fungi by organic amendments applied in management of plant parasitic nematode. Asian J. Plant Sci. 8: 153-159. https://doi.org/10.3923/ajps.2009.153.159
  267. Walker, H. L. and Tilley, A. M. 1997. Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide agent. Biol. Control 10: 104-112. https://doi.org/10.1006/bcon.1997.0559
  268. Wang, C. and St. Leger, R. J. 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 6: 808-816. https://doi.org/10.1128/EC.00409-06
  269. Wang, C. Y., Fang, Z. M., Sun, B. S., Gu, L. J., Zhang, K. Q. and Sung, C. K. 2008. High infectivity of an endoparasitic fungus strain, Esteya vermicola, against nematodes. J. Microbiol. 46: 380-389. https://doi.org/10.1007/s12275-007-0122-7
  270. Wang, X., Wang, T., Wang, J., Guan, T. and Li, H. 2014. Morphological, molecular and biological characterization of Esteya vermicola, a nematophagous fungus isolated from intercepted wood packing materials exported from Brazil. Mycoscience 55: 367-377. https://doi.org/10.1016/j.myc.2014.01.002
  271. Wang, Y. B., Wang, C. Y., Wang, Z., Xue, J. J., Li, Z., Li, J. J., Gu, L. J., Hou, J. G., Lee, M. R., Ma, R. S. and Sung, C. K. 2012. Laboratory studies on the development of a conidial formulation of Esteya vermicola. Biocontrol Sci. Technol. 22: 1362-1372. https://doi.org/10.1080/09583157.2012.729027
  272. Waterfield, N., Kamita, S. G., Hammock, B. D. and ffrench-Constant, R. 2005. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiol. Lett. 245: 47-52. https://doi.org/10.1016/j.femsle.2005.02.018
  273. Weeks, E. N., Machtinger, E. T., Gezan, S. A., Kaufman, P. E. and Geden, C. J. 2017. Effects of four commercial fungal formulations on mortality and sporulation in house flies (Musca domestica) and stable flies (Stomoxys calcitrans). Med. Vet. Entomol. 31: 15-22. https://doi.org/10.1111/mve.12201
  274. Wei, K., Wang, Q., Wang, Y., Qu, L. and Zhang, Y. 2014. Rapid molecular detection of Esteya vermicola based on specific primers and the FTA-DNA extraction method. Biocontrol Sci. Technol. 24: 872-881. https://doi.org/10.1080/09583157.2014.900736
  275. Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250-256. https://doi.org/10.1094/PHYTO-97-2-0250
  276. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C. and Bakker, P. A. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412. https://doi.org/10.1094/PHYTO-08-11-0222
  277. Wilkinson, P., Waterfield, N. R., Crossman, L., Corton, C., Sanchez-Contreras, M., Vlisidou, I., Barron, A., Bignell, A., Clark, L., Ormond, D., Mayho, M., Bason, N., Smith, F., Simmonds, M., Churcher, C., Harris, D., Thompson, N. R., Quail, M., Parkhill, J. and ffrench-Constant, R. H. 2009. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10: 302. https://doi.org/10.1186/1471-2164-10-302
  278. Williamson, N. R., Fineran, P. C., Leeper, F. J. and Salmond, G. P. 2006. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4: 887-899. https://doi.org/10.1038/nrmicro1531
  279. Wilson, M. J. and Jackson, T. A. 2013. Progress in the commercialisation of bionematicides. BioControl 58: 715-722. https://doi.org/10.1007/s10526-013-9511-5
  280. Xia, Y., Xie, S., Ma, X., Wu, H., Wang, X. and Gao, X. 2011. The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol. Lett. 322: 99-107. https://doi.org/10.1111/j.1574-6968.2011.02336.x
  281. Xia, Z. 2013. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749. Carbohydr. Polym. 98: 178-180. https://doi.org/10.1016/j.carbpol.2013.05.073
  282. Xu, Y., Orozco, R., Kithsiri Wijeratne, E. M., Espinosa-Artiles, P., Leslie Gunatilaka, A. A., Patricia Stock, S. and Molnar, I. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet. Biol. 46: 353-364. https://doi.org/10.1016/j.fgb.2009.03.001
  283. Yamamoto, K., Oishi, K., Fujimatsu, I. and Komatsu, K. 1991. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57: 3028-3032.
  284. Yang, E., Xu, L., Yang, Y., Zhang, X., Xiang, M., Wang, C., An, Z. and Liu, X. 2012. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc. Natl. Acad. Sci. U. S. A. 109: 10960-10965. https://doi.org/10.1073/pnas.1120915109
  285. Yang, J., Tian, B., Liang, L. and Zhang, K. Q. 2007a. Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl. Microbiol. Biotechnol. 75: 21-31. https://doi.org/10.1007/s00253-007-0881-4
  286. Yang, J., Wang, L., Ji, X., Feng, Y., Li, X., Zou, C., Xu, J., Ren, Y., Mi, Q., Wu, J., Liu, S., Liu, Y., Huang, X., Wang, H., Niu, X., Li, J., Liang, L., Luo, Y., Ji, K., Zhou, W., Yu, Z., Li, G., Liu, Y., Li, L., Qiao, M., Feng, L. and Zhang, K. Q. 2011. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog. 7: e1002179. https://doi.org/10.1371/journal.ppat.1002179
  287. Yang, J. and Zhang, K. Q. 2014. Biological control of plant-parasitic nematodes by Nematophagous fungi. In: Nematode-Trapping Fungi, eds. by K. Q. Zhang and K. D. Hyde, pp. 231-262. Springer, Dordrecht, Netherlands.
  288. Yang, L. Y., Wang, J. D., Zhang, J., Xue, C. Y., Zhang, H., Wang, X. J. and Xiang, W. S. 2013. New nemadectin congeners with acaricidal and nematocidal activity from Streptomyces microflavus neau3 Y-3. Bioorg. Med. Chem. Lett. 23: 5710-5713. https://doi.org/10.1016/j.bmcl.2013.08.002
  289. Yang, S. M., Dowler, W. M. and Johnson, D. R. 1991. Comparison of methods for selecting fungi pathogenic to leafy spurge. Plant Dis. 75: 1201-1203. https://doi.org/10.1094/PD-75-1201
  290. Yang, Y., Yang, E., An, Z. and Liu, X. 2007b. Evolution of nematodetrapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc. Natl. Acad. Sci. U. S. A. 104: 8379-8384. https://doi.org/10.1073/pnas.0702770104
  291. Yang, Z. S., Li, G. H., Zhao, P. J., Zheng, X., Luo, S. L., Li, L., Niu, X. M. and Zhang, K. Q. 2010. Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J. Microbiol. Biotechnol. 26: 2297-2302. https://doi.org/10.1007/s11274-010-0410-y
  292. Young, C. C., Arun, A. B., Lai, W. A., Chen, W. M., Chou, J. H., Shen, F. T., Rekha, P. D. and Kampfer, P. 2008. Chromobacterium aquaticum sp. nov., isolated from spring water samples. Int. J. Syst. Evol. Microbiol. 58: 877-880. https://doi.org/10.1099/ijs.0.65573-0
  293. Yu, Z., Mo, M., Zhang, Y. and Zhang, K. Q. 2014. Taxonomy of Nematode-trapping fungi from Orbiliaceae, Ascomycota. In: Nematode-Trapping Fungi, eds. by K. Q. Zhang and K. D. Hyde, pp. 41-210. Springer, Dordrecht, Netherlands.
  294. Zeddam, J. L., Cruzado, J. A., Rodriguez, J. L. and Ravallec, M. 2003. A new nucleopolyhedrovirus from the oil-palm leaf-eater Euprosterna elaeasa (Lepidoptera: Limacodidae): preliminary characterization and field assessment in Peruvian plantation. Agric. Ecosyst. Environ. 96: 69-75. https://doi.org/10.1016/S0167-8809(03)00034-3
  295. Zeng, Q., Huang, H., Zhu, J., Fang, Z., Sun, Q. and Bao, S. 2013. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie van Leeuwenhoek 103: 1107-1111. https://doi.org/10.1007/s10482-013-9890-8
  296. Zhang, F., Dashti, N., Hynes, R. K. and Smith, D. L. 1996. Plant growth promoting Rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot. 77: 453-460. https://doi.org/10.1006/anbo.1996.0055
  297. Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W. and Schairer, H. U. 1997. Cloning and analysis of the first cry gene from Bacillus popilliae. J. Bacteriol. 179: 4336-4341. https://doi.org/10.1128/jb.179.13.4336-4341.1997
  298. Zheng, Z., Zheng, J., Liu, H., Peng, D. and Sun, M. 2016a. Complete genome sequence of Fictibacillus phosphorivorans G25-29, a strain toxic to nematodes. J. Biotechnol. 239: 20-22. https://doi.org/10.1016/j.jbiotec.2016.09.014
  299. Zheng, Z., Zheng, J., Zhang, Z., Peng, D. and Sun, M. 2016b. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms. Sci. Rep. 6: 31341. https://doi.org/10.1038/srep31341
  300. Zimmermann, G. 2008. The entomopathogenic fungi Isaria farinose (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci. Technol. 18: 865-901. https://doi.org/10.1080/09583150802471812