DOI QR코드

DOI QR Code

Recent progress in studies on the characteristics of surface rupture associated with large earthquakes

대규모 지진에 수반된 지표파열특성에 관한 최근 연구동향

  • Choi, Jin-Hyuck (Institut de Physique du Globe de Paris, Sorbonne Paris Cite, Universite Paris Diderot, UMR7154 CNRS) ;
  • Kim, Young-Seog (Dept. of Earth & Environmental Sciences, Pukyong National University) ;
  • Klinger, Yann (Institut de Physique du Globe de Paris, Sorbonne Paris Cite, Universite Paris Diderot, UMR7154 CNRS)
  • 최진혁 (파리지구물리연구소) ;
  • 김영석 (부경대학교 지구환경과학과) ;
  • Received : 2016.10.27
  • Accepted : 2017.02.26
  • Published : 2017.02.28

Abstract

In given active faults, to explore the location, timing, and size of large paleo-earthquakes is the most essential work to examine characteristics of future large earthquakes, which can be facilitated for seismic hazard assessment and loss mitigation. During the last 20 years, many studies have been conducted for mapping of earthquake surface ruptures and/or active faults, which is greatly indebted to the advances in remote sensing techniques. In particular, based on fault geometry and slip distribution, many studies have tried to understand the effects of fault inheritances on coseismic rupture dynamics as well as temporal and spatial rupture history over multiple earthquake cycle. These studies commonly indicate that seismogenic-scale fault segmentation plays a key role in earthquake rupture behavior and fault evolution. This implies that paleoseismological investigations should be carried out based on fault segmentation in order to infer earthquake recurrence characteristics in a given active fault. Here, after brief reviewing of general concepts, materials/methods, and history/trend of the study on earthquake surface ruptures and active faults, we introduce major results of the most recent studies. Finally, we suggest a possible segmentation system of the Yangsan fault in southeast Korea based on previous paleoseismological studies, and discuss research strategies for further active fault researches in Korea and its associated seismic hazard assessment.

활성단층에 대한 고지진학적 연구를 수행하여 고지진의 발생 위치, 시기, 규모 등을 밝히는 것은 장래에 발생 가능한 지진의 특성을 파악하는데 도움을 주며, 이는 지진재해도 작성의 기초자료로 활용가능하기 때문에 지진피해를 줄이는 데 필수적이다. 최근 20년 동안 새롭게 개발된 원격탐사기법을 활용하여 지진에 수반된 지표파열 및 활성단층을 지도화하는 많은 연구가 수행되었다. 특히 단층의 기하와 변위 분포를 바탕으로 단층에 내재된 특성이 지진파열의 동역학적 전파과정 및 지진파열의 시공간적 이력에 미치는 영향에 대한 연구가 이어졌다. 다수의 연구결과들이 공통적으로 지시하는 것은 지진원 규모의 단층분절시스템이 지진파열의 거동 및 단층진화에 핵심적인 역할을 한다는 것이다. 이는 주어진 활성단층을 대상으로 지진의 재발특성을 이해하기 위해서는 단층의 분절시스템에 기초한 고지진학적 연구가 필요하다는 점을 시사한다. 이 논문에서는 지진지표파열 및 활성단층 연구와 관련된 일반적인 개념을 비롯해 연구자료, 연구방법, 연구사, 최신 연구동향에 대한 간략한 검토와 최근 연구에서 도출된 주요 연구결과를 소개하였다. 마지막으로 한반도 남동부에 위치한 양산단층의 고지진학적 연구결과를 바탕으로 양산단층의 분절화를 새롭게 제안하였으며, 우리나라 활성단층 연구 및 이와 관련된 지진재해평가의 방향에 대해 토의하였다.

Keywords

Acknowledgement

Grant : 한반도 동남부 지진특성 분석과 단층과의 연관성 해석

Supported by : (재)기상기술개발원, 한국연구재단

References

  1. Aki, K., 1979, Characterization of barriers on an earthquake fault. Journal of Geophysical Research, 84(B11), 6140-6148. https://doi.org/10.1029/JB084iB11p06140
  2. Baljinnyam, I., Bayasgalan, A., Borisov, B.A., Cisternas, A., Demyanovich, M.G., Ganbaatar, L., Kochetkov, V.M., Kurushin, R.A., Molnar, P., Philip, H. and Vashchilov, Y.Y., 1993, Ruptures of major earthquakes and active deformation in Mongolia and its surroundings. Geological Society of America Memoirs, 181, 43-52.
  3. Barbot, S., Fialko, Y. and Sandwell, D., 2008, Effect of a compliant fault zone on the inferred earthquake slip distribution. Journal of Geophysical Research, 113, B06404.
  4. Barka, A.A. and Kadinsky-Cade, K., 1988, Strike-slip fault geometry in Turkey and its influence on earthquake activity, Tectonics, 7(3), 663-684. https://doi.org/10.1029/TC007i003p00663
  5. Ben-Zion, Y., 2008, Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Reviews of Geophysics, 46(4), RG4006.
  6. Berberian, M., Jackson, J.A., Qorashi, M., Khatib, M.M., Priestley, K., Talebian, M. and Ghafuri-Ashtiani, M., 1999, The 1997 May 10 Zirkuh (Qa'enat) earthquake (Mw 7.2): Faulting along the Sistan suture zone of eastern Iran. Geophysical Journal International, 136(3), 671-694. https://doi.org/10.1046/j.1365-246x.1999.00762.x
  7. Bhat, H.S., Dmowska, R., Rice, J.R. and Kame, N., 2004, Dynamic slip transfer from the Denali to Totschunda Faults, Alaska: Testing theory for fault branching. Bulletin of the Seismological Society of America, 94(6B), S202-S213. https://doi.org/10.1785/0120040601
  8. Bhat, H.S., Olives, M., Dmowska, R. and Rice, J.R., 2007, Role of fault branches in earthquake rupture dynamics. Journal of Geophysical Research, 112, B11309. https://doi.org/10.1029/2007JB005027
  9. Bonilla, M.G., 1988, Minimum earthquake magnitude associated with coseismic surface faulting. Bulletin of the Association of Engineering Geologists, 25, 17-29.
  10. Chang, C.J. and Chang, T.W., 1998, Movement history of the Yangsan Fault based on paleostress analysis. The Journal of Engineering Geology, 8(1), 35-49 (in Korean with English abstract). https://doi.org/10.3969/j.issn.1004-9665.2000.01.007
  11. Chang, C.J. and Chang, T.W., 2009, Behavioral characteristics of the Yangsan Fault based on geometric analysis of fault slip. The Journal of Engineering Geology, 19(3), 277-285 (in Korean with English abstract).
  12. Chang, K.-H., Woo, B.-G., Lee, J.-H., Park, S.-O. and Yao, A., 1990, Cretaceous and Early Cenozoic stratigraphy and history of Eastern Kyongsang Basin, S. Korea. Journal of the Geological Society of Korea, 25(5), 471-487.
  13. Chang, S.J. and Baag, C.E., 2005, Crustal structure in southern Korea from joint analysis of teleseismic receiver functions and surface-wave dispersion. Bulletin of the Seismological Society of America, 95(4), 1516-1534. https://doi.org/10.1785/0120040080
  14. Chery, J., Carretier, S. and Ritz, J.-F., 2001, Postseismic stress transfer explains time clustering of large earthquakes in Mongolia. Earth and Planetary Science Letters, 194(1), 277-286. https://doi.org/10.1016/S0012-821X(01)00552-0
  15. Chester, F.M., Evans, J.P. and Biegel, R.L., 1993, Internal structure and weakening mechanisms of the San-Andreas fault. Journal of Geophyscal Research, 98(B1), 771-786. https://doi.org/10.1029/92JB01866
  16. Choi, J.-H., Edwards, P., Ko, K. and Kim, Y.-S., 2016, Definition and classification of fault damage zones: A review and a new methodological approach. Earth-Science Reviews, 152, 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
  17. Choi, J.-H., Jin, K., Enkhbayar, D., Davvasambuu, B., Bayasgalan, A. and Kim, Y.-S., 2012, Rupture propagation based on damage patterns, slip distribution, and fault segmentation of the 1957 Mw 8.1 Gobi-Altay earthquake rupture along the Bogd fault, Mongolia. Journal of Geophysical Research, 117, B12401.
  18. Choi, J.-H., Kim, Y.-S. and Choi, S.-J., 2015a, Identification of a suspected Quaternary fault in eastern Korea: Proposal for a paleoseismic research procedure for the mapping of active faults in Korea. Journal of Asian Earth Sciences, 113, 897-908. https://doi.org/10.1016/j.jseaes.2015.09.014
  19. Choi, J.-H., Kim, Y.-S., Gwon, S., Edwards, P., Rezaei, S., Kim, T. and Lim, S.-B., 2015b, Characteristics of large-scale fault zone and Quaternary fault movement in Maegok-dong, Ulsan. The Journal of Engineering Geology, 25(4), 485-498 (in Korean with English abstract). https://doi.org/10.9720/kseg.2015.4.485
  20. Choi, J.-H., Klinger, Y., Ferry, M., Ritz, J.-F., Kurtz, R., Rizza, M., Bollinger, L., Davaasambuu, B., Tsend-Ayush, N., Ulziibat, M., Chimed, O. and Demberel, S., 2015c, High-resolution surface-rupture map and slip distribution for the 1905 M8 Tsetserleg-Bulnay, Mongolia, earthquake sequence. 2015 AGU Fall Meeting (Abstract), San Francisco, Dec. 14-18, T41B-2874.
  21. Choi, J.-H., Yang, S.-J. and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, 45(1), 9-28 (in Korean with English abstract).
  22. Choi, S.-J., Jeon, J.S., Choi, J.-H., Kim, B., Ryoo, C.-R., Hong, D.-G. and Chwae, U., 2014, Estimation of possible maximum earthquake magnitudes of Quaternary faults in the southern Korean Peninsula. Quaternary International, 344, 53-63. https://doi.org/10.1016/j.quaint.2014.05.052
  23. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  24. Cowie, P.A. and Scholz, C.H., 1992, Physical explanation for the displacement-length relationship of faults, using a post-yield fracture mechanics model. Journal of Structural Geology, 14, 1133-1148. https://doi.org/10.1016/0191-8141(92)90065-5
  25. Das, S. and Henry, C., 2003, Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, 41(3), 1013. https://doi.org/10.1029/2002RG000119
  26. Dolan, J.F. and Haravitch, B.D., 2014, How well do surface slip measurements track slip at depth in large strike-slip earthquakes? The importance of fault structural maturity in controlling on-fault slip versus off-fault surface deformation. Earth and Planetary Science Letters, 388, 38-47. https://doi.org/10.1016/j.epsl.2013.11.043
  27. Du, Y. and Aydin, A., 1995, Shear fracture patterns and connectivity at geometric complexities along strike-slip faults. Journal of Geophysical Research, 100, 18093-18102. https://doi.org/10.1029/95JB01574
  28. Duan, B. and Oglesby, D.D., 2006, Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults. Journal of Geophysical Research, 111, B05309.
  29. Duman, T.Y., Emre, O., Dogan, A. and Ozalp, S., 2005, Step-over and bend structures along the 1999 Duzce earthquake surface rupture, North Anatolian fault, Turkey. Bulletin of the Seismological Society of America, 95(4), 1250-1262. https://doi.org/10.1785/0120040082
  30. Elliott, A.J., Oskin, M.E., Liu-Zeng, J. and Shao, Y., 2015, Rupture termination at restraining bends: The last great earthquake on the Altyn Tagh Fault. Geophysical Research Letters, 42(7), 2164-2170. https://doi.org/10.1002/2015GL063107
  31. Faulkner, D.R., Lewis, A.C. and Rutter, E.H., 2003, On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics, 367, 147-156.
  32. Faulkner, D.R., Mitchell, T.M., Rutter, E.H. and Cembrano, J., 2008, On the structure and mechanical properties of large strike-slip faults. Geological Society, London, Special Publications, 299, 139-150. https://doi.org/10.1144/SP299.9
  33. Fialko, Y., Sandwell, D., Simons, M. and Rosen, P., 2005, Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435, 295-299. https://doi.org/10.1038/nature03425
  34. Field, E.H., Arrowsmith, R.J., Biasi, G.P., Bird, P., Dawson, T.E., Felzer, K.R., Jackson, D.D., Johnson, K.M., Jordan, T.H., Madden, C., Michael, A.J., Milner, K.R., Page, M.T., Parsons, T., Powers, P.M., Shaw, B.E., Thatcher, W.R., Weldon II, R.J. and Zeng, Y., 2014, Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)-The Time-Independent Model. Bulletin of the Seismological Society of America, 104(3), 1122-1180. https://doi.org/10.1785/0120130164
  35. Fonstad, M.A., Dietrich, J.T., Courville, B.C., Jensen, J.L. and Carbonneau, P.E., 2013, Topographic structure from motion:a new development in photogrammetric measurement. Earth Surface Processes and Landforms, 38, 421-430. https://doi.org/10.1002/esp.3366
  36. Fuis, G.S. and Wald, L.A., 2003, Rupture in south-central Alaska-The Denali fault earthquake of 2002. U.S. Geological Survey Fact Sheet, 014-03.
  37. Glennie, C.L., Carter, W.E., Shrestha, R.L. and Dietrich, W.E., 2013, Geodetic imaging with airborne lidar: the Earth's surface revealed. Reports on Progress in Physics, 76(8), 086801. https://doi.org/10.1088/0034-4885/76/8/086801
  38. Gold, P.O., Oskin, M.E., Elliott, A.J., Hinojosa-Corona, A., Taylor, M.H., Kreylos, O. and Cowgill, E., 2013, Coseismic slip variation assessed from terrestrial lidar scans of the El Mayor-Cucupah Surface Rupture. Earth and Planetary Science Letters, 366, 151-162. https://doi.org/10.1016/j.epsl.2013.01.040
  39. Gutenberg, B. and Richter, C.F., 1954, Seismicity of the Earth and Associated Phenomena (2nd ed.). Princeton University Press, Princeton, New Jersey.
  40. Haddon, E.K., Amos, C.B., Zielke, O., Jayko, A.S. and Burgmann, R., 2016, Surface slip during Large Owens Valley earthquakes. Geochemistry, Geophysics, Geosystems, 17(6), 2239-2269. https://doi.org/10.1002/2015GC006033
  41. Haeussler, P.J., Schwartz, D.P., Dawson, T.E., Stenner, H.D., Lienkaemper, J.J., Sherrod, B., Cinti, F.R., Montone, P., Craw, P.A., Crone, A.J. and Personius, S.F., 2004, Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M 7.9 earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B), S23-S52. https://doi.org/10.1785/0120040626
  42. Han, S.-R., Park, J.Y. and Kim, Y.-S., 2009, Evolution modeling of the Yangsan-Ulsan fault system with stress changes. Journal of the Geological Society of Korea, 45(4), 361-377 (in Korean with English abstract).
  43. Hanks, T.C. and Kanamori, H., 1979, A moment magnitude scale. Journal of Geophysical Research, 84, 2348-2350. https://doi.org/10.1029/JB084iB05p02348
  44. Harris, R. and Day, S., 1993, Dynamics of fault interaction:Parallel strike-slip faults. Journal of Geophysical Research, 98(B3), 4461-4472. https://doi.org/10.1029/92JB02272
  45. Harris, R. and Day, S., 1999, Dynamic 3D simulations of earthquakes on En Echelon Faults. Geophysical Research Letters, 26(14), 2089-2092. https://doi.org/10.1029/1999GL900377
  46. Hecker, S., Abrahamson, N.A. and Wooddell, K.E., 2013, Variability of displacment at a point: implications for earthquake-size distribution and rupture hazard on faults. Bulletin of the Seismological Society of America, 103(2A), 651-674. https://doi.org/10.1785/0120120159
  47. Hudnut, K.W., Seeber, L. and Pacheco, J., 1989, Cross-fault triggering in the November 1987 Superstition Hills eartqhauake sequence, Southern California. Geophysical Research Letters, 16(2), 199-202. https://doi.org/10.1029/GL016i002p00199
  48. Hwang, B.-H., Lee, J.-D. and Yang, K., 2004, Petrological study of the granitic rocks around the Yangsan Fault:Lateral Displacement of the Yangsan Fault. Journal of the Geological Society of Korea, 40(2), 161-178 (in Korean with English abstract).
  49. Im, C.B., Shim, T.M., Choi, H.S., Yang, J.M. and Park, S.J., 2016, Technical status and applications of the probabilistic fault displacement hazard analysis. Journal of the Geological Society of Korea, 52(4), 447-455 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2016.52.4.447
  50. Jiang, J. and Lapusta, N., 2016, Deeper penetration of large earthquakes on seismically quiescent faults. Science, 352(6291), 1293-1297. https://doi.org/10.1126/science.aaf1496
  51. Jin, K. and Kim, Y.-S., 2010, Review and new interpretation for the propagation characteristics associated with the 1999 Chi-Chi earthquake faulting event. Island Arc, 19(4), 659-675. https://doi.org/10.1111/j.1440-1738.2010.00740.x
  52. Kame, N., Rice, J.R. and Dmowska, R., 2003, Effects of pre-stress state and rupture velocity on dynamic fault branching. Journal of Geophysical Research, 108(B5), 2265.
  53. Kaneko, Y. and Fialko, Y., 2011, Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic off-fault response. Geophysical Journal International. 186, 1389-1403. https://doi.org/10.1111/j.1365-246X.2011.05117.x
  54. Kim, C.-M., Han, R., Jeong, G.Y., Jeong, J.O. and Son, M., 2016, Internal structure and materials of the Yangsan fault, Bogyeongsa area, Pohang, South Korea. Geosciences Journal, 20(6), 759-773. https://doi.org/10.1007/s12303-016-0019-8
  55. Kim, H.-T., Kim, Y.-S. and We, K.-J., 2014, Basic concepts and geological applications of LiDAR. The Journal of Engineering Geology, 24(1), 123-135 (in Korean with English abstract). https://doi.org/10.9720/kseg.2014.1.123
  56. Kim, Y.-S. and Jin, K., 2006, Estimated earthquake magnitude from the Yugye Fault displacement on a trench section in Pohang, SE Korea. Journal of the Geological Society of Korea, 42(1), 79-94 (in Korean with English abstract).
  57. Kim, Y.-S., Jin, K., Choi, W.-H. and Kee, W.-S., 2011, Understanding of active faults: A review for recent researches. Journal of the Geological Society of Korea, 47(6), 723-752 (in Korean with English abstract).
  58. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J., 2003, Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25(5), 793-812. https://doi.org/10.1016/S0191-8141(02)00200-6
  59. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J., 2004, Fault damage zones. Journal of Structural Geology, 26(3), 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
  60. Kim, Y.-S. and Sanderson, D.J., 2004, Similarities between strike-slip faults at different scales and a simple age determining method for active faults. Island Arc, 13(1), 128-143. https://doi.org/10.1111/j.1440-1738.2003.00410.x
  61. Kim, Y.-S. and Sanderson, D.J., 2005, The relationship between displacement and length of faults: a review. Earth-Science Reviews, 68, 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
  62. Kim, Y.-S. and Sanderson, D.J., 2008, Earthquake and fault propagation, displacement and damage zones. In:Landowe, S.J., Hammler, G.M. (eds.), Structural Geology:New Research. Nova Sciences, Hauppauge, New York, 99-117.
  63. King, G., Klinger, Y., Bowman, D. and Tapponnier, P., 2005, Slip-partitioned surface breaks for the 2001 Kokoxili earthquake, China (Mw 7.8). Bulletin of the Seismological Society of America, 95(2), 731-738. https://doi.org/10.1785/0120040101
  64. King, G.C. and Nabelek, J., 1985, The role of fault bends in faults in the initiation and termination of earthquake rupture. Science, 228, 984-987. https://doi.org/10.1126/science.228.4702.984
  65. King, G.C.P., Stein, R.S. and Lin, J., 1994, Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935-953.
  66. King, G.C.P. and Wesnousky, S.G., 2007, Scaling of fault parameters for continental strike-slip earthquakes. Bulletin of the Seismological Society of America, 97(6), 1833-1840. https://doi.org/10.1785/0120070048
  67. Klinger, Y., 2010, Relation between continental strike-slip earthquake segmentation and thickness of the crust. Journal of Geophysical Research, 115, B07306.
  68. Klinger, Y., Choi, J.-H. and Vallage, A., 2016, Fault branching and long-term earthquake rupture scenario for strike-slip earthquakes. In: Thomas, M.Y., Mitchell, T.M., Bhat, H.S. (eds.), Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture. American Geophysical Union and John Wiley & Sons, Inc. (accepted).
  69. Klinger, Y., Etchebes, M., Tapponier, P. and Narteau, C., 2011, Characteristic slip for five great earthquakes along the Fuyun Fault in China. Nature Geosciences, 4, 389-392. https://doi.org/10.1038/ngeo1158
  70. Klinger, Y., Michel, R. and King, G.C.P., 2006, Evidence for an earthquake barrier model from Mw -7.8 Kokoxili (Tibet) earthquake slip-distribution. Earth and Planetary Science Letters, 242(3-4), 354-364. https://doi.org/10.1016/j.epsl.2005.12.003
  71. Klinger, Y., Xu, X., Tapponnier, P., Van der Woerd, J., Laserre, C. and King, G.C.P., 2005, High-resolution satellite imagery mapping of the surface rupture and slip distribution of the Mw -7.8, November 14, 2001 Kokoxili Earthquake (Kunlun fault, Northern Tibet, China). Bulletin of the Seismological Society of America, 95(5), 1970-1987. https://doi.org/10.1785/0120040233
  72. Knuepfer, P.L.K., 1989, Implication of the characteristics of end-points of historical surface ruptures for the nature of fault segmentation. U.S. Geological Survey Open File Report, 89-315, 193-228.
  73. Kyung, J.B., 2003, Paleoseismology of the Yangsan fault, southeastern part of Korean peninsula. Annals of Geophysics, 46, 983-996.
  74. Kyung, J.B., 2010, Paleosismological study and evaluation of maximum earthquake magnitude along the Yangsan and Ulsan fault zones in the southeastern part of Korea. Geophysics and Geophysical Exploration, 13(3), 187-197 (in Korean with English abstract).
  75. Kyung, J.B. and Chang, T.-W., 2001, The lastest fault movement on the Northern Yangsan fault zone around the Yugye-Ri area, southeast Korea. Journal of Korean Earth Science Society, 37(4), 563-577 (in Korean with English abstract).
  76. Kyung, J.B. and Lee, K., 2006, Active fault study of the Yangsan fault system and Ulsan fault system, southeastern part of the Korean Peninsula. Special Volume of the Journal of the Korean Geophysical Society, 9, 219-230.
  77. Kyung, J.-B., Lee, K., Okada, A., Watanabe, M., Suzuki, Y. and Takemura, K., 1999, Study of fault characteristics by trench survey in the Sangchon-ri area in the southern part of Yangsan fault, southeastern Korea. Journal of Korean Earth Science Society, 20(1), 101-110 (in Korean with English abstract).
  78. Lee, B.J., Choi, S.-J., Chwae, U.-C. and Ryoo, C.-R., 1999, Characteristics of the Quaternary faulting of the Wolpyeong, Yangsan, S.E. Korea. Journal of the Geological Society of Korea, 35(3), 179-188 (in Korean with English abstract).
  79. Lee, J., Rezaei, S., Hong, Y., Choi, J.-H., Choi, J.-H., Choi, W.-H., Rhee, K.-W. and Kim, Y.-S., 2015, Quaternary fault analysis through a trench investigation on the northern extension of the Yangsan fault at Dangu-ri, Gyungju-si, Gyeongsangbuk-do. Journal of the Geological Society of Korea, 51(5), 471-485 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.5.471
  80. Lee, K., 2010, Comments on seismicity and crustal structure of the Korean peninsula. Geophysics and Geophysical Exploration, 13(3), 256-267 (in Korean with English abstract).
  81. Lee, K. and Jin, Y.G., 1991, Segmentation of the Yangsan fault system: Geophysical studies on major faults in the Kyeongsang Basin. Journal of the Geological Society of Korea, 27(4), 434-449.
  82. Lee, K. and Na, S.H., 1983, A study of microearthquake activity of the Yangsan fault. Journal of the Geological Society of Korea, 19(3), 127-135 (in Korean with English abstract).
  83. Lettis, W., Bachhuber, J., Witter, R., Brankman, C., Randolph, C.E., Barka, A., Page, W.D. and Kaya, A., 2002, Influence of releasing step-overs on surface fault rupture and fault segmentation: examples from the 17 August 1999 Izmit earthquake on the North Anatolian fault, Turkey. Bulletin of the Seismological Society of America, 92(1), 19-42. https://doi.org/10.1785/0120000808
  84. Lozos, J.C., Oglesby, D.D., Duan, B. and Wesnousky, S.G., 2011, The effects of double fault bends on rupture propagation:A geometrical parameter study. Bulletin of the Seismological Society of America, 101(1), 385-391. https://doi.org/10.1785/0120100029
  85. Maercklin, N., Festa, G., Colombelli, S. and Zollo, A., 2012, Twin ruptures grew to build up the giant 2011 Tohoku, Japan, earthquake. Scientific Reports, 2, 709. https://doi.org/10.1038/srep00709
  86. Manighetti, I., Campillo, M., Bouley, S. and Cotton, F., 2007, Earthquake scaling, fault segmentation, and structural maturity. Earth and Planetary Science Letters, 253(3-4), 429-438. https://doi.org/10.1016/j.epsl.2006.11.004
  87. Manighetti, I., Campillo, M., Sammis, C., Mai, P.M. and King, G., 2005, Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics. Journal of Geophysical Research, 110, B05302.
  88. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. and Rabaute, T., 1993, The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364, 138-142. https://doi.org/10.1038/364138a0
  89. McGill, S. and Sieh, K.E., 1991, Surficial offsets on the Central and Eastern Garlock fault associated with prehistoric earthquakes. Journal of Geophysical Research, 96(B13), 21597-21621. https://doi.org/10.1029/91JB02030
  90. McCalpin, J.P. and Nelson, A.R., 2009, Introduction to Paleoseismology. In: Paleoseismology, McCalpin, J.P. (2nd ed.), International Geophysics Series v. 95. Elsevier Publishing, 1-25.
  91. Mignan, A., Danciu, L. and Giardini, D., 2015, Reassessment of the maximum fault rupture length of strike-slip earthquakes and inference on Mmax in the Anatolian Peninsula, Turkey. Seismological Research Letters, 86(3), 890-900. https://doi.org/10.1785/0220140252
  92. Milliner, C.W.D., Sammis, C., Allam, A.A., Dolan, J.F., Hollingsworth, J., Leprince, S. and Ayoub, F., 2016, Resolving fine-scale heterogeneity of co-seismic slip and the relation to fault structure. Scientific Reports, 6, 27201. https://doi.org/10.1038/srep27201
  93. Nielsen, S. and Knopoff, L., 1998, The equivalent strength of geometrical barriers to earthquakes. Journal of Geophysical Research, 103(B5), 9953-9965. https://doi.org/10.1029/97JB03293
  94. Norio, O., Ye, T., Kajitani, Y., Shi, P. and Tatano, H., 2011, The 2011 eastern Japan great earthquake disaster: Overview and comments. International Journal of Disaster Risk Science, 2(1), 34-42. https://doi.org/10.1007/s13753-011-0004-9
  95. Oglesby, D.D. and Mai, P.M., 2012, Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophysical Journal International, 188(3), 1071-1087. https://doi.org/10.1111/j.1365-246X.2011.05289.x
  96. Okada, A., Watanabe, M., Sato, H., Jun, M.S., Jo, W.R., Kim, S.K., Jeon, J.S., Chi, H.C. and Oike, K., 1994, Active fault topography and trench survey in the central part of the Yangsan fault, southeast Korea. Journal of Geography, 103, 111-126 (in Japanese with English abstract). https://doi.org/10.5026/jgeography.103.2_111
  97. Park, J.-C., Kim, W., Chung, T.W., Baag, C.-E. and Ree, J.-H., 2007, Focal mechanisms of recent earthquakes in the Southern Korean Peninsula. Geophysical Journal International, 169(3), 1103-1114. https://doi.org/10.1111/j.1365-246X.2007.03321.x
  98. Peacock, D.C.P. and Sanderson, D.J., 1991, Displacement, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721-733. https://doi.org/10.1016/0191-8141(91)90033-F
  99. Perrin, C., Manighetti, I., Ampuero, J.-P., Cappa, F. and Gaudemer, Y., 2016, Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. Journal of Geophysical Research, 121(5), 3666-3685. https://doi.org/10.1002/2015JB012671
  100. Peyrat, S., Olsen, K. and Madariaga, R., 2001, Dynamic modeling of the 1992 Landers earthquake. Journal of Geophysical Research, 106(B11), 26467-26482. https://doi.org/10.1029/2001JB000205
  101. Poliakov, A.N., Dmowska, R. and Rice, J.R., 2002, Dynamic shear rupture interactions with fault bends and off-axis secondary faulting. Journal of Geophysical Research, 107(B11), 2295.
  102. Quigley, M., Van Dissen, R., Villamor, P., Litchfield, N., Barrell, D., Furlong, K., Stahl, T., Duffy, B., Bilderback, E., Noble, D., Townsend, D., Begg, J., Jongens, R., Ries, W., Claridge, J., Klahn, A., Mackenzie, H., Smith, A., Hornblow, S., Nicol, R., Cox, S., Langridge, R. and Pedley, K., 2010, Surface rupture of the Greendale Fault during the Mw 7.1 Darfield (Canterbury) Earthquake, New Zealand: initial findings. Bulletin of the New Zealand Society for Earthquake Engineering, 43(4), 236-242. https://doi.org/10.5459/bnzsee.43.4.236-242
  103. Reid, H.F., 1910, The mechanics of the earthquake. In:Lawson, A.C. (chariman), Vol. II of the California earthquake of April 18, 1906: Report of the state earthquake investigation commission. Carnegie Institution of Washington Publication 87 (reprinted in 1969).
  104. Reilinger, R.E., Ergintav, S., Burgmann, R., McClusky, S., Lenk, O., Barka, A., Gurkan, O., Hearn, L., Feigl, K.L., Cakmak, R., Aktug, B., Ozener, H. and Toksoz, M.N., 2000, Coseismic and postseismic fault slip for the 17 August 1999, M = 7.5, Izmit, Turkey earthquake. Science, 289(5484), 1519-1524. https://doi.org/10.1126/science.289.5484.1519
  105. Ren, Z., Zhang, Z., Chen, T., Yan, S., Yin, J., Zhang, P., Zheng, W., Zhang, H. and Li, C., 2015, Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes. Geological Society of America Bulletin, 128(1-2), 3-18. https://doi.org/10.1130/B31155.1
  106. Rockwell, T.K. and Klinger, Y., 2013, Surface rupture and slip distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: implications for rupture segmentation and dynamics. Bulletin of the Seismological Society of America, 103(2A), 629-640. https://doi.org/10.1785/0120120192
  107. Salisbury, J.B., Rockwell, T.K., Middelton, T.J. and Hudnut, K.W., 2012, Lidar and field observations of slip distribution for the most recent surface ruptures along the Central San Jacinto Fault. Bulletin of the Seismological Society of America, 102(2), 598-619. https://doi.org/10.1785/0120110068
  108. Schlupp, A. and Cisternas, A., 2007, Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay). Geophysical Journal International, 169(3), 1115-1131. https://doi.org/10.1111/j.1365-246X.2007.03323.x
  109. Scholz, C.H., 2002, The Mechanics of Earthquakes and Faulting (2nd Ed.), Cambridge University Press, Cambridge, United Kingdom.
  110. Schwartz, D.P. and Coppersmith, K. J., 1984, Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89(B7), 5681-5698. https://doi.org/10.1029/JB089iB07p05681
  111. Schwartz, D.P., Haeussler, P.J., Seitz, G.G. and Dawson, T.E., 2012, Why the 2002 Denali fault rupture propagated onto the Totschunda fault: Implications for fault branching and seismic hazards. Journal of Geophysical Research, 117, B11304.
  112. Segall, P. and Pollard, D.D., 1980, Mechanics of discontinuous faults. Journal of Geophysical Research, 85(B8), 4337-4350. https://doi.org/10.1029/JB085iB08p04337
  113. Sharp, R.V., Budding, K.E., Boawright, J., Ader, M.J., Bonilla, M.G., Clark, M.M., Fumal, T.E., Harms, K.K., Lienkaemper, J.J., Morton, D.M., O'Neill, B.J., Ostergren, C.L., Ponti, D.J. Rymer, M.J. Saxton, J.L. and Sims, J.D., 1989, Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquake of 12 November 1987. Bulletin of the Seismological Society of America, 79(2), 252-281.
  114. Shaw, B.E. and Scholz, C.H., 2001, Slip-length scaling in large earthquakes: Observations and theory and implications for earthquake physics. Journal of Geophysical Research, 28(15), 2995-2998. https://doi.org/10.1029/2000GL012762
  115. Shelly, D.R., 2010, Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault. Nature 463, 648-652. https://doi.org/10.1038/nature08755
  116. Sibson, R.H., 1985, Stopping of earthquake ruptures at dilational fault jogs. Nature, 316, 248-251. https://doi.org/10.1038/316248a0
  117. Sibson, R.H., 1989, Earthquake faulting as a structural process. Journal of Structural Geology, 11(1-2), 1-14. https://doi.org/10.1016/0191-8141(89)90032-1
  118. Sibson, R.H., 2003, Thickness of the seismic slip zone. Bulletin of the Seismological Society of America, 93(3), 1169-1178. https://doi.org/10.1785/0120020061
  119. Sibson, R., Ghisetti, F. and Ristau, J., 2011, Stress control of an evolving strike-slip fault system during the 2010-2011 Canterbury, New Zealand, earthquake sequence. Seismological Research Letters, 82(6), 824-832. https://doi.org/10.1785/gssrl.82.6.824
  120. Sieh, K.E. and Jahns, R.H., 1984, Holocene activity of the San Andreas fault at Wallace Creek, California. Geological Society of America Bulletin, 95(8), 883-896. https://doi.org/10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2
  121. Sieh, K., Jones, L., Hauksson, E., Hudnut, K., Eberhart-Phillips, D., Heaton, T., Hough, S., Hutton, K., Kanamori, H., Lilje, A., Lindvall, S., McGill, S.F., Mori, J., Rubin, C., Spotila, J.A., Stock, J., Thio, H.K., Treiman, J., Wernicke, B. and Zachariasen, J., 1993, Near-field investigations of the Landers earthquake sequence, April to July 1992. Science, 260(5105), 171-176. https://doi.org/10.1126/science.260.5105.171
  122. Slemmons, D.B. and McKinney, R., 1977, Definition of "Active Fault". U.S. Army Engineer Waterways Experiment Station Soil and Pavements Laboratory, Miscellaneous paper S-77-8, Final Report, p. 22.
  123. Smith-Konter, B.R., Sandwell, D.T. and Shearer, P., 2011, Locking depths estimated from geodesy and seismology along the San Andreas Fault System: Implications for seismic moment release. Journal of Geophysical Research, 116(B6).
  124. Soliva, R., Benedicto, A., Schultz, R.A., Maerten, L. and Micarellie, L., 2008, Displacement and interaction of normal fault segments branched at depth: Implications for fault growth and potential earthquake rupture size. Journal of Structural Geology, 30(10), 1288-1299. https://doi.org/10.1016/j.jsg.2008.07.005
  125. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K., 2013, Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsula. Journal of the Geological Society of Korea, 49(1), 93-118 (in Korean with English abstract).
  126. Stein, R.S., Barka, A.A. and Dieterich, J.H., 1997, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International, 128(3), 594-604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x
  127. Stein, S. and Okal, E.A., 2011, The size of the 2011 Tohoku earthquake need not have been a surprise. EOS, 92(27), 227-228.
  128. Teran, O.J., Fletcher, J.M., Oskin, M.E., Rockwell, T.K., Hudnut, K.W., Spelz, R.M., Akciz, S.O., Hernandez-Flores, A.P. and Morelan, A.E., 2015, Geologic and structural controls on rupture zone fabric: A field-based study of the 2010 Mw 7.2 El Mayor-Cucapah earthquake surface rupture. Geosphere, 11(3), 899-920. https://doi.org/10.1130/GES01078.1
  129. Thomas, M.Y., Avouac, J.-P., Gratier, J.-P. and Lee, J.-C., 2014, Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan. Tectonophysics, 632, 48-63. https://doi.org/10.1016/j.tecto.2014.05.038
  130. Vallage, A., Klinger, Y., Grandin, R., Bhat, H.S. and Pierrot-Deseilligny, M., 2015, Inelastic surface deformation during the 2013 Mw 7.7 Balochistan, Pakistan, earthquake. Geology, 43(1), 1079-1082.
  131. Vallee, M., Landes, M., Shapiro, N.M. and Klinger, Y., 2008, The 14 November 2001 Kokoxili (Tibet) earthquake:High-frequency seismic radiation originating from the transitions between sub-Rayleigh and supershear rupture velocity regimes. Journal of Geophysical Research, 113(B7).
  132. Wald, D. and Heaton, T., 1994, Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bulletin of the Seismological Society of America, 84(3), 668-691.
  133. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. and Bonson, C.G., 2003, Formation of segmented normal faults: A 3-D perspective. Journal of Structural Geology, 25(8), 1251-1262. https://doi.org/10.1016/S0191-8141(02)00161-X
  134. Ward, S.N., 1997, Dogtails versus rainbows: Synthetic earthquake rupture models as an aid in interpreting geological data. Bulletin of the Seismological Society of America, 87(6), 1422-1441.
  135. Wesnousky, S.G., 1994, The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bulletin of the Seismological Society of America, 84(6), 1940-1959.
  136. Wesnousky, S., 2006, Predicting the endpoints of earthquake ruptures, Nature, 444(7117), 358-360. https://doi.org/10.1038/nature05275
  137. Wesnousky, S., 2008, Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98(4), 1609-1632. https://doi.org/10.1785/0120070111
  138. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J. and Reynolds, J.M., 2012, 'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  139. Woo, S., Lee, H., Han, R., Chon, C.-M., Son, M. and Song, I., 2015, Frictional properties of gouges collected from the Yangsan Fault, SE Korea. Journal of the Geological Society of Korea, 51(6), 569-584 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2015.51.6.569
  140. Xu, X.W., Yu, G.H., Klinger, Y., Tapponnier, P. and Van der Woerd, J., 2006, Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw 7.8), northern Tibetan Plateau, China. Journal of Geophysical Research, 111, B05316.
  141. Yang, J.-S. and Lee, H.-K., 2014, Quaternary fault activity of the Yangsan fault zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea. Economic and Environmental Geology, 47(1), 17-27 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.1.17
  142. Yoo, H., Herrmann, R.B., Cho, K.H. and Lee, K., 2007, Imaging the three-dimensional crust of the Korean peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions. Bulletin of the Seismological Society of America, 97(3), 1002-1011. https://doi.org/10.1785/0120060134
  143. Yoon, S.H. and Chough, S.K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan). Geological Society of America Bulletin, 107(1), 83-97. https://doi.org/10.1130/0016-7606(1995)107<0083:RSSITE>2.3.CO;2
  144. Zielke, O. and Arrowsmith, J.R., 2008, Depth variation of coseismic stress drop explains bimodal earthquake magnitude-frequency distribution. Geophysical Research Letters, 35, L24301. https://doi.org/10.1029/2008GL036249
  145. Zielke, O. and Arrowsmith, J.R., 2012, LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere, 8(1), 206-221. https://doi.org/10.1130/GES00686.1
  146. Zielke, O., Arrowsmith, J.R., Grant Ludwig, L. and Akciz, S.O., 2010, Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault. Science, 327(5969), 1119-1122. https://doi.org/10.1126/science.1182781
  147. Zielke, O., Arrowsmith, J.R., Grant Ludwig, L. and Akciz, S.O., 2012, High-resolution topography-derived offsets along the 1857 Fort Tejon earthquake rupture trace, San Andreas fault. Bulletin of the Seismological Society of America, 102(3), 1135-1154. https://doi.org/10.1785/0120110230
  148. Zielke, O., Klinger, Y. and Arrowsmith, J.R., 2015, Fault slip and earthquake recurrence along strike-slip faults - Contributions of high-resolution geomorphic data. Tectonophysics, 638, 43-62. https://doi.org/10.1016/j.tecto.2014.11.004
  149. Zinke, R., Hollingsworth, J. and Dolan, J.F., 2014, Surface slip and off-fault deformation patterns in the 2013 Mw 7.7 Balochistan, Pakistan earthquake: Implications for controls on the distribution of near-surface coseismic slip. Geochemistry, Geophysics, Geosystems, 15(12), 5034-5050. https://doi.org/10.1002/2014GC005538
  150. Zoback, M.L., 2006, The 1906 earthquake and a century of progress in understanding earthquakes and their hazards. GSA Today, 16(4-5), 4-11. https://doi.org/10.1130/GSAT01604.1

Cited by

  1. Preliminary study on rupture mechanism of the 9.12 Gyeongju Earthquake vol.53, pp.3, 2017, https://doi.org/10.14770/jgsk.2017.53.3.407
  2. 원자력시설물 부지의 장기적 안전성 확보를 위한 지질구조 평가 vol.51, pp.2, 2017, https://doi.org/10.9719/eeg.2018.51.2.149
  3. 경북 영덕군 동부 일원의 지질과 U-Pb 연령 vol.27, pp.3, 2017, https://doi.org/10.7854/jpsk.2018.27.3.153
  4. Cumulative offset analysis of the Central-Southern Yangsan Fault based on topography of Quaternary fluvial terrace vol.56, pp.2, 2020, https://doi.org/10.14770/jgsk.2020.56.2.135
  5. Quaternary structural characteristics and paleoseismic interpretation of the Yangsan Fault at Dangu-ri, Gyeongju-si, SE Korea, through trench survey vol.56, pp.2, 2017, https://doi.org/10.14770/jgsk.2020.56.2.155
  6. Evidence of coseismic slip recorded by Quaternary fault materials and microstructures, Naengsuri, Pohang vol.56, pp.2, 2020, https://doi.org/10.14770/jgsk.2020.56.2.175
  7. ESR dating of fault gouge - review vol.56, pp.2, 2017, https://doi.org/10.14770/jgsk.2020.56.2.211
  8. Microscopic analysis of fault rock using X-ray computed tomography from the Wolsan trench in the middle part of Yangsan fault, SE Korea vol.56, pp.2, 2017, https://doi.org/10.14770/jgsk.2020.56.2.273
  9. Late Quaternary transpressional earthquakes on a long-lived intraplate fault: A case study of the Southern Yangsan Fault, SE Korea vol.553, pp.None, 2017, https://doi.org/10.1016/j.quaint.2020.07.025
  10. Understanding the distribution and internal structure of the main core of the Yangsan Fault Zone: Current trends and future work vol.56, pp.5, 2017, https://doi.org/10.14770/jgsk.2020.56.5.619
  11. 3D Fabric Analysis in Fault Rock Using Synchrotron μ-CT: A Statistical Approach to SPO (Shape Preferred Orientation) for Estimation of Fault Motion vol.10, pp.11, 2020, https://doi.org/10.3390/min10110994
  12. 지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례 vol.54, pp.2, 2017, https://doi.org/10.9719/eeg.2021.54.2.177
  13. Geological Records of Coseismic Shear Localization Along the Yangsan Fault, Korea vol.126, pp.8, 2017, https://doi.org/10.1029/2020jb021393
  14. 원격탐사와 GIS를 이용한 지구환경재해 관측과 관리 기술 현황 vol.37, pp.6, 2017, https://doi.org/10.7780/kjrs.2021.37.6.2.1
  15. 활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰 vol.37, pp.6, 2021, https://doi.org/10.7780/kjrs.2021.37.6.2.12