DOI QR코드

DOI QR Code

Effects of different algae in diet on growth and interleukin (IL)-10 production of juvenile sea cucumber Apostichopus japonicus

  • Anisuzzaman, Md (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Jeong, U-Cheol (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Jin, Feng (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Choi, Jong-Kuk (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Kamrunnahar, Kabery (Department of Seafood and Aquaculture Science, Gyeongsang National University) ;
  • Lee, Da-In (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Yu, Hak Sun (Department of Parasitology, School of Medicine, Pusan National University) ;
  • Kang, Seok-Joong (Department of Seafood and Aquaculture Science, Gyeongsang National University)
  • Received : 2017.06.16
  • Accepted : 2017.09.11
  • Published : 2017.10.31

Abstract

The experiment was conducted to investigate the effects of different algae in diet on growth, survival, and interleukin-10 productions of sea cucumber. At first, a 9-week feeding trail was conducted to evaluate the growth performance and survival of the sea cucumber fed one of the six experimental diets containing ST (Sargassum thunbergii), UL (Ulva lactuca), UP (Undaria pinnatifida), LJ (Laminaria japonica), SS (Schizochytrium sp.), and NO (Nannochloropsis oculata) in a recirculating aquaculture system. The result showed that survival was not significantly different among the dietary treatments, and the specific growth rate (SGR) of sea cucumber fed the UL diet ($1.58%d^{-1}$) was significantly higher than that of sea cucumber fed the other diets (P < 0.05), except for the LJ and NO diets. Secondly, interleukin (IL)-10 gene expression was determined where mice splenocytes were stimulated with $10{\mu}g\;ml^{-1}$ of sea cucumber extracts for 2 h. The result showed that IL-10 gene expression levels were significantly increased in UL, LJ, and NO diets fed sea cucumber extracts compared to other experimental diets. The results suggest that dietary inclusion with Ulva lactuca, Laminaria japonica, and Nannochloropsis oculata algae may improve the growth of juvenile sea cucumber and could upregulate IL-10 gene expression in mice splenocytes. Such detailed information could be helpful in further development of more appropriate diets for sea cucumber culture.

Keywords

References

  1. Agatsuma Y. Food consumption and growth of the juvenile sea urchin Strongylocentrotus intermedius. Fish Sci. 2000;66:467-72. https://doi.org/10.1046/j.1444-2906.2000.00075.x
  2. Battaglene SC, Seymour EJ, Ramofafia C. Survival and growth of cultured juvenile sea cucumbers Holothuria scabra. Aquaculture. 1999;178:293-322. https://doi.org/10.1016/S0044-8486(99)00130-1
  3. Bitterlich G. Digestive process in silver carp Hypophthalmichthys molitrix studied in vitro. Aquaculture. 1985;50:123-31. https://doi.org/10.1016/0044-8486(85)90158-9
  4. Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods: a review. Marine Drugs. 2011;9:1761-805. https://doi.org/10.3390/md9101761
  5. Burrows EM. Seaweeds of the British Isles, vol. 2. London: Natural History Museum; 1991.
  6. Caulton MS. The importance of pre-digestive food preparation to Tilapia rendalli Boulanger when feeding on aquatic macrophytes. Trans Rhod Sci Assoc. 1976;57:22-8.
  7. Conand C. Present status of world sea cucumber resources and utilization: an international overview. Advances in sea cucumber aquaculture and management (Lovatelli, A., Conand,C., Purcell, S., Uthicke, S., Hamel, J.F. & Mercier, A. eds), FAO, Rome, Italy; 2004. p.13-23.
  8. Esmat AY, Said MM, Soliman AA, El-Masry KS, Badiea EA. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition. 2013;29:258-67. https://doi.org/10.1016/j.nut.2012.06.004
  9. Farshadpour F, Gharibi S, Taherzadeh M, Amirinejad R, Taherkhani R, Habibian A, Zandi K. Antiviral activity of Holothuria sp. a sea cucumber against herpes simplex virus type 1 (HSV-1). Eur Rev Med Pharmacol Sci. 2014;18:333-7.
  10. Feng J, Jong-Kuk C, U-Cheol J, Anisuzzaman M, Chung-Ho R, Byeong-dae C, Seok-Joong K. Effects of fermented fecal solid diets on growth of the sea cucumber Apostichopus japonicus. Korean J Fish Aqua Sci. 2016b;49:161-7.
  11. Feng J, Anisuzzaman M, U-Cheol J, Jong-Kuk C, Hak-Sun Y, Seung-Wan K, Seok-Joong K. Comparison of fatty acid composition of wild and cultured sea cucumber Apostichopus japonicus. Korean J Fish Aqua Sci. 2016a;49:474-85.
  12. Guo Y, Ding Y, Xu F, Liu B, Kou Z, Xiao W, Zhu J. Systems pharmacology-based drug discovery for marine resources: an example using sea cucumber (holothurians). J Ethnopharmacol. 2015;165:61-72. https://doi.org/10.1016/j.jep.2015.02.029
  13. Gutierrez-Murgas YM, Gwenn S, Danielle R, Matthew B, Jessica N. IL-10 plays an important role in the control of inflammation but not in the bacterial burden in S. epidermidis CNS catheter infection. J Neuroinflammation. 2016;13(1):271. https://doi.org/10.1186/s12974-016-0741-1
  14. Hai-Bo Y, Qin-Feng G, Shuang-Lin D, Bin W. Changes in fatty acid profiles of sea cucumber Apostichopus japonicus (Selenka) induced by terrestrial plants in diets. Aquaculture. 2015;442:119-24. https://doi.org/10.1016/j.aquaculture.2015.03.002
  15. Hudson IR, Wigham BD, Tyler PA. The feeding behavior of a deep-sea holothurian, Stichopus tremulus (Gunnerus) based on in situ observation and experiments using a remotely operated vehicle. J Exp Mar Biol Ecol. 2004;301:75-91. https://doi.org/10.1016/j.jembe.2003.09.015
  16. Jurkovic N, Kolb N, Colic I. Nutritive value of marine algae Laminaria japonica and Undaria pinnatifida. Mol Nutr Food Res. 1995;39:63-6.
  17. Kandilian R, Lee E, Pilon L. Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra. Bioresour Technol. 2013;137:63-73. https://doi.org/10.1016/j.biortech.2013.03.058
  18. Kiani N, Heidari B, Rassa M, Kadkhodazadeh M, Heidari B. Antibacterial activity of the body wall extracts of sea cucumber (Invertebrata; Echinodermata) on infectious oral streptococci. J Bas Clin Physiol Pharmacol. 2014;1:1-7.
  19. Kikodze N, Pantsulaia I, Chikovani T. The role of T regulatory and Th17 cells in the pathogenesis of rheumatoid arthritis (review). Georgian Med News. 2016;261:62-8.
  20. Lee DI, Park MK, Kang SA, Choi JH, Kang SJ, Lee JY, Yu HS. Preventive intra oral treatment of sea cucumber ameliorate OVA-induced allergic airway inflammation. Am J Chin Med. 2016;44:1663-74. https://doi.org/10.1142/S0192415X16500932
  21. Li Y, Wang Y, Wang P. Habitat environment and water area selection of stock increment of Apostichopus japonicus. Trans Oceano Limno. 1994;4:42-7.
  22. Li B, Zhu W, Feng Z, Li L, Hu Y. Affection of diet phospholipid content on growth and body composition of sea cucumber, Apostichopus japonicus. Mar Sci. 2009;33:25-8.
  23. Liao. Fauna Sinica: Phylum Echiondermta Class Holthuroidea. Beijing: Science Press; 1997. p. 21-37.
  24. Liu Y, Dong S, Tian X, Wang F, Gao Q. Effects of dietary sea mud and yellow soil on growth and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture. 2009;286:266-70. https://doi.org/10.1016/j.aquaculture.2008.09.029
  25. Liu Y, Dong SL, Tian XL, Wang F, Gao QF. The effect of different macroalgae on the growth of sea cucumbers (Apostichopus japonicus Selenka). Aquac Res. 2010;2:1-5. https://doi.org/10.1111/j.1753-5131.2010.01026.x
  26. Lobban CS, Harrison PJ. Seaweed ecology and physiology. New York: Cambridge University Press; 1994.
  27. Massin C. Food and feeding mechanisms: Holothuroidea. In: Lawrence JM, editor. Echinoderm Jangoux, M. Rotterdam: A. A. Balkema Publishers; 1982. p. 115-20.
  28. McBride SC, Lawrence JM, Lawrence AL, Mulligan TJ. The effects of protein concentration in prepared diets on growth, feeding rate, total organic absorption, and gross assimilation efficiency of the sea urchin Strongylocentrotus franciscanus. J Shellfish Res. 1998;17:1562-70.
  29. Menghe HL, Edwin HR, Craig ST, Lester K. Effects of dried algae Schizochytrium sp., a rich source of docosahexaenoic acid, on growth, fatty acid composition, and sensory quality of channel catfish Ictalurus punctatus. Aquaculture. 2009; 292:232-6. https://doi.org/10.1016/j.aquaculture.2009.04.033
  30. Miyai K, Tokushige T, Kondo M. Suppression of thyroid function during ingestion of seaweed "Kombu" (Laminaria japonoca) in normal Japanese adults. Endocr J. 2008;55:1103-8. https://doi.org/10.1507/endocrj.K08E-125
  31. Moriarty DJW. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Aus J Mar Fresh Res. 1982;33:255-63. https://doi.org/10.1071/MF9820255
  32. Otero-Villanueva MM, Kelly MS, Burnell G. How diets influence energy partitioning in the regular echinoid Psammechinus miliaris; constructing an energy budget. J Exp Mar Biol Ecol. 2004;304:159-81. https://doi.org/10.1016/j.jembe.2003.12.002
  33. Pan D, Kenway-Lynch CS, Lala W, Veazey RS, Lackner AA, Das A, Pahar B. Lack of interleukin-10-mediated anti-inflammatory signals and upregulated interferon gamma production are linked to increased intestinal epithelial cell apoptosis in pathogenic simian immunodeficiency virus infection. J Virol. 2014;88: 13015-28. https://doi.org/10.1128/JVI.01757-14
  34. Payne AI. Gut pH and digestive strategies in estuarine grey mullet Mugilidae and tilapia Cichlidae. J Fish Res Board Can. 1978;13:627-9.
  35. Qi ZH, Liu HM, Li B, Mao YZ, Jiang ZJ, Zhang JH, Fang JG. Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai ino. Aquaculture. 2010;300:189-93. https://doi.org/10.1016/j.aquaculture.2010.01.019
  36. Raeiszadeh Jahromi S, Mahesh PA, Jayaraj BS, Madhunapantula SR, Holla AD, Vishweswaraiah S, Ramachandra NB. Serum levels of IL-10, IL-17F and IL-33 in patients with asthma: a case-control study. J Asthma. 2014;51:1004-13. https://doi.org/10.3109/02770903.2014.938353
  37. Santos V, Billett DSM, Rice AL, Wolff GA. Organic matter in deep-sea sediments from the porcupine abyssal plain in the north-east Atlantic Ocean: 1. Lipids. Deep-Sea Res. 1994;41:789-819.
  38. Seo JY, Lee SM. Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicaus. Aquac Nutr. 2011;17:56-61. https://doi.org/10.1111/j.1365-2095.2009.00728.x
  39. Seo JY, Shin IS, Lee SM. Effect of dietary inclusion of various plant ingredients as an alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber Apostichopus japonicaus. Aquac Nutr. 2011;17:549-56. https://doi.org/10.1111/j.1365-2095.2010.00849.x
  40. Shahabuddin AM, Khan NMD, Koji M, Araki T, Yoshimatsu T. Dietary supplementation of red alga Pyropia spheroplasts on growth, feed utilization and body composition of sea cucumber, Apostichopus japonicus (Selenka). Aquac Res. 2017;1:1-10.
  41. Shi C, Dong SL, Pei SR, Wang F, Tian XL, Gao QF. Effects of diatom concentrationin prepared feeds on growth and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquac Res. 2013;46:609-17.
  42. Slater MJ, Carton AG. Survivorship and growth of the sea cucumber Australostichopus (Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture. 2007;272:389-98. https://doi.org/10.1016/j.aquaculture.2007.07.230
  43. Slater MJ, Je AG, Carton AG. The use of the waste from green-lipped mussels as a food source for juvenile sea cucumber, Australostichopus mollis. Aquaculture. 2009;292: 219-24. https://doi.org/10.1016/j.aquaculture.2009.04.027
  44. Sloan NA. Echinorderm fisheries of the world: a review. Echinodermata (Proceedings of the Fifth International Echinoderm Conference). Rotterdam: A. A. Balkema Publishers; 1984. p. 109-24.
  45. Sui X. The main factors influencing the larval development and survival rate of the sea cucumber Apostichopus japonicus. Oceanolo et Limnolo Sinica. 1989;20:314-21.
  46. Wang FJ, Sun XT, Li F. Studies on sexual reproduction and seedling-rearing of Sargassum thunbergii. Mar Fish Res. 2006;27:1-6.
  47. Wang JQ, Tang L, Xu C, Cheng JC. Histological observation of alimentary tract and annual changes of four digestive enzymes in sea cucumber (Apostichopus japonicus). Fish Sci. 2007;26:481-4.
  48. Wijesinghe WA, Jeon YJ, Ramasamy P, Wahid ME, Vairappan CS. Anticancer activity and mediation of apoptosis in human HL-60 leukaemia cells by edible sea cucumber (Holothuria edulis) extract. Food Chem. 2013;139:326-31. https://doi.org/10.1016/j.foodchem.2013.01.058
  49. Yanagisawa T. Aspects of the biology and culture of the sea cucumber. In: De Silva S, editor. Tropical Mariculture. London: Academic; 1998. p. 291-308.
  50. Yingst JY. The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. J Exp Mar Biol Ecol. 1976;23:55-69. https://doi.org/10.1016/0022-0981(76)90085-X
  51. Yuan CY. Current status and development of feed in sea cucumber. Fish Sci. 2005;24:54-6.
  52. Yuan X, Yang H, Zhou Y, Mao Y, Zhang T, Liu Y. The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture. 2006;256:457-67. https://doi.org/10.1016/j.aquaculture.2006.01.029
  53. Yue J, King-Wai F, Raymond TYW, Feng C. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J Agri Food Chem. 2004;52:1196-200. https://doi.org/10.1021/jf035004c
  54. Zhang BL, Sun DL, Wu YQ. Preliminary analysis on the feeding habit of Apostichopus japonicus in the rocky coast waters off Lingshan Island. Mar Sci. 1995;3:11-3.
  55. Zhou Y, Yang H, Liu S, Yuan X, Mao Y, Zhang T, Liu Y, Zhang F. Feeding on biodeposits of bivalves by the sea cucumber Stichopus japonicus Selenka (Echinidermata: Holothuroidea) and a suspension coculture of filter-feeding bivalves with deposit feeders in lantern nets from longlines. Aquaculture. 2006;256:510-20. https://doi.org/10.1016/j.aquaculture.2006.02.005
  56. Zhu J, Liu H, Leng K, Qu K, Wang S, Xue Z, Sun Y. Studies on the effects of some common diets on the growth of Apostichopus japonicaus. Mar Fish Res. 2007;25:48-53.

Cited by

  1. The embryological and larval development of the sea urchin Diadema savignyi (Audouin, 1809) (Diadematoida: Diadematidae) from the South China Sea vol.16, pp.3, 2017, https://doi.org/10.1080/17451000.2020.1726960
  2. Water Temperature and Microplastic Concentration Influenced Microplastic Ingestion and Retention Rates in Sea Cucumber (Holothuria cinerascens Brandt, 1835) vol.56, pp.2, 2021, https://doi.org/10.1007/s12601-021-00013-3
  3. Micro and Macroplastics Analysis in the Digestive Tract of a Sea Cucumber (Holothuriidae, Holothuria floridana) of the Placencia Lagoon, Belize vol.51, pp.2, 2017, https://doi.org/10.18475/cjos.v51i2.a2