DOI QR코드

DOI QR Code

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of SidiBel Abbes) ;
  • Madani, K. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of SidiBel Abbes) ;
  • Mokhtari, M. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of SidiBel Abbes) ;
  • Feaugas, X. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, Universite La Rochelle) ;
  • Touzain, S. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, Universite La Rochelle)
  • Received : 2017.05.26
  • Accepted : 2017.07.31
  • Published : 2017.11.25

Abstract

The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.

Keywords

References

  1. ABAQUS/CAE (2015), Ver 6.14 User's Manual, Hibbitt, Karlsson & Sorensen, Inc.
  2. Ayatollahi, M.R. and Hashemi, R. (2007), "Computation of stress intensity factors (KI, KII) and T-stress for cracks reinforced by composite patching", Compos. Struct., 78(4), 602-609. https://doi.org/10.1016/j.compstruct.2005.11.024
  3. Bartholomeusz, R.A., Baker, A.A., Chester, R.J. and Searl, A. (1999), "Bonded joints with throughthickness adhesive stresses-reinforcing the F/A-18 Y470.5 bulkhead", J. Adhes., 19(2-3), 173-180. https://doi.org/10.1016/S0143-7496(98)00032-3
  4. Belhouari, M., Bouiadjra, B.B., Megueni, A. and Kaddouri, K. (2004), "Comparison of double and single bonded repairs to symmetric composite structures: a numerical analysis", Compos. Struct., 65(1), 47-53. https://doi.org/10.1016/j.compstruct.2003.10.005
  5. Benchiha, A. and Madani, K. (2015), "Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint", Struct. Eng. Mech., 53(5), 1017-1030. https://doi.org/10.12989/sem.2015.53.5.1017
  6. Benchiha, A., Madani, K., Touzain, S., Feaugas, X. and Ratwani, M. (2016), "Numerical analysis of the influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch", Steel Compos. Struct., 20(4), 951-962. https://doi.org/10.12989/scs.2016.20.4.951
  7. Botelho, E.C. (2009), "Fatigue behavior study on repaired aramid fiber/epoxy composites", J. Aerosp., Technol. Manage. V, 1(2), 217-221. https://doi.org/10.5028/jatm.2009.0102217221
  8. Breitzman, T.D., Iarve, E.V., Cook, B.M., Schoeppner, G.A. and Lipton, R.P. (2009), "Optimization of a composite scarf repair patch under tensile loading", Compos. Part A: Appl. Sci. Manufact., 40(12), 1921-1930. https://doi.org/10.1016/j.compositesa.2009.04.033
  9. Brighenti, R., Carpinteri, A. and Vantadori, S. (2006), "A genetic algorithm applied to optimization of patch repair for cracked plates", Comput. Meth. Appl. Mech. Eng., 196(1), 466-475. https://doi.org/10.1016/j.cma.2006.07.004
  10. Campilho, R.D.S.G., Moura, M.F.S.F. and Domingues, J.J.M.S. (2005), "Modeling single and double-lap repairs on composites materials", Compos. Sci. Technol., 65(13), 1948-1958. https://doi.org/10.1016/j.compscitech.2005.04.007
  11. Charalambides, M.N., Hardouin, R., Kinloch, A.J. and Matthews, F.L. (1998), "Adhesively-bonded repairs to fiber-composite materials", I. Exper. Compos. A, 29(11), 1371-1381. https://doi.org/10.1016/S1359-835X(98)00060-8
  12. Charalambides, M.N., Kinloch, A.J. and Matthews, F.L. (1998), "Adhesively-bonded repairs to fibercomposite materials II, finite element modeling", Compos. A, 29(11), 1383-1396. https://doi.org/10.1016/S1359-835X(98)00061-X
  13. Costa Mattos, H.S., Monteiro, A.H. and Palazzetti, R. (2012), "Failure analysis of adhesively bonded joints in composite materials", J. Mater. Des., 33, 242-247. https://doi.org/10.1016/j.matdes.2011.07.031
  14. Costa, T.R.F. Serrano, A.M., Atman, A.P.F., Loguercio, A.D. and Reis, A. (2012), "Durability of composite repair using different surface treatments", J. Dentist., 40(6), 513-521. https://doi.org/10.1016/j.jdent.2012.03.001
  15. Elhannani, M., Madani, K., Mokhtari, M., Touzain, S., Feaugas, X. and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint", Struct. Eng. Mech., 59(2), 313-326. https://doi.org/10.12989/sem.2016.59.2.313
  16. Erdogan, F. and Ratwani, M. (1971), "Stress distribution in bonded joints", J. Compos. Mater., 5(3), 378-393. https://doi.org/10.1177/002199837100500308
  17. Gong, X.J., Cheng, P., Rousseau, J. and Aivazzadeh, S. (2007), "Effect of local stresses on static strength and fatigue life of patched composite panels", Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan.
  18. Gong, X.J.P., Cheng, R.J. and Aivazzadeh, S. (2007), "Effect of local stresses on static strength and fatigue life of patched composite panels", Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan.
  19. Grabovac, I. and Whittaker, D. (2009), "Application of bonded composites in the repair of ships structures-a 15-year service experience", Compos. Part A, 40(9), 1381-1398. https://doi.org/10.1016/j.compositesa.2008.11.006
  20. Hart-Smith, L.J. (1987), "Design of adhesively bonded joints, joining fiber-reinforced plastics", 19, 271-311.
  21. Hosseini-Toudeshky, H. and Mohammadi, B. (2009), "Thermal residual stresses effects on fatigue crack growth of repaired panels bounded with various composite materials", Compos. Struct., 89(2), 216-223. https://doi.org/10.1016/j.compstruct.2008.07.029
  22. Hosseini-Toudeshky, H., Mohammadi, B. and Daghyani, H.R. (2003), "Fatigue crack growth rate of adhesively repaired thin aluminum panels in general mixed-mode condition", Proceedings of the 11th Annual Conference on Mechanical Engineering, Mashad, Iran, May.
  23. Icten, B.M. and Karakuzu, R. (2002), Compos. Sci. Technol., 62, 1259-1271. https://doi.org/10.1016/S0266-3538(02)00071-4
  24. Jones, R. and Callinan, R.J. (1979), "Finite element analysis of patched cracks", J. Struct. Mech., 7(2), 107-130. https://doi.org/10.1080/03601217908905315
  25. Kilic, B., Madenci, E. and Ambur, D.R. (2006), "Influence of adhesive spew in bonded single-lap joints", Eng. Fract. Mech., 73, 1472-1490. https://doi.org/10.1016/j.engfracmech.2005.12.015
  26. Klung, J.C. and Sun, C.T. (1998), "Large deflection effects of cracked aluminum plates repaired with bonded composite patches", Compos. Struct., 42(3), 291-296. https://doi.org/10.1016/S0263-8223(98)00018-X
  27. Liu, X. and Wang, G. (2007), "Progressive failure analysis of bonded composite repairs", Compos. Struct., 81(3), 331-340. https://doi.org/10.1016/j.compstruct.2006.08.024
  28. Madani, K. (2010), "Experimental and numerical study of repair techniques for panels with geometrical discontinuities", Comput. Mater. Sci., 48(1), 83-93. https://doi.org/10.1016/j.commatsci.2009.12.005
  29. Madani, K., Touzain, S., Feaugas, X., Roy, A. and Cohendoz, S. (2009), "Analyze of the notch effect on the distribution of the stresses in the adhesive layer between two bonded aluminum 2024-T3 plates", J. Mater. Technol., 97(5), 315-324. https://doi.org/10.1051/mattech/2009043
  30. Mitchel, R.A., Woolley, R.J. and Chwirut, D.J. (1975), "Analysis of composite reinforced cut-outs and cracks", AIAA J., 13(6), 744-749. https://doi.org/10.2514/3.60431
  31. Moreira, R.D.F., De Moura, M.F.S.F., Figueiredo, M.A.V., Fernandes, R.L.A. and Goncalves, J.P.M. (2015), "Characterisation of composite bonded single-strap repairs under fatigue loading", J. Mech. Sci., 103, 22-29. https://doi.org/10.1016/j.ijmecsci.2015.09.001
  32. Naboulsi, S. and Mall, S. (1996), "Modeling of a cracked metallic structure with bonded composite patch using the three layer technique", Compos. Struct., 35(3), 295-308. https://doi.org/10.1016/0263-8223(96)00043-8
  33. Naveen, R., Soni, S.R. and Denney, J.J. (1883), "Analysis of bonded composite patch repaired metallic structures-an overview of aging aircraft", AIAA98, 1578-1588.
  34. Ouinas, D., Hebbar, A., Bachir Bouiadjra, B., Belhouari, M. and Serier, B. (2009), "Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch", Compos. B Eng., 40(8), 804-810. https://doi.org/10.1016/j.compositesb.2009.06.002
  35. Qing, X.P., Beard, S.J., Kumar, A. and Hannum, R. (2006), "A real-time active smart patch system for monitoring the integrity of bonded repair on an aircraft structure", Smart Mater. Struct., 15(3), 66-73. https://doi.org/10.1088/0964-1726/15/3/N03
  36. Sabelkin, V., Mall, S., Hansen, M.A. and Derriso, R.M. (2007), "Investigation into cracked aluminum plate repaired with bonded composite patch", Compos. Struct., 79(1), 55-66. https://doi.org/10.1016/j.compstruct.2005.11.028
  37. Shih, C.F., Moran, B. and Nakamura, T. (1986), "Energy release rate along a three-dimensional crack front in a thermally stressed body", J. Fract., 30, 79-102.
  38. Tenchev, R.T. and Falzon, B.G. (2008), "An experimental and numerical study of the static and fatigue performance of a composite adhesive repair", Key Eng. Mater., 383, 10.4028. https://doi.org/10.4028/www.scientific.net/KEM.383.25
  39. Thrall Jr Edward, W. (1977), "Primary adhesively bonded structure technology", J. Aircraft, 14, 588-594. https://doi.org/10.2514/3.58825
  40. Thrall Jr Edward, W. (1979), "PABST program test results", Adhes. Age, 22, 22-33.
  41. Ting, T., Jones, R., Chiu, W.K., Marshall, I.H. and Greer, J.M. (1999), "Composites repairs to rib stiffened panels", Compos. Struct., 47(1), 737-743. https://doi.org/10.1016/S0263-8223(00)00046-5
  42. Tsai, G.C. and Shen, S.B. (2004), "Fatigue analysis of cracked thick aluminum plate bonded with composite patches", Compos. Struct., 64(1), 79-90. https://doi.org/10.1016/S0263-8223(03)00216-2
  43. Turaga, V.R.S. and Ripudaman, S. (1999), "Modeling of patch repairs to a thin cracked sheet", Eng. Fract. Mech., 62(2), 267-289. https://doi.org/10.1016/S0013-7944(98)00088-5

Cited by

  1. Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process vol.8, pp.1, 2017, https://doi.org/10.12989/aas.2021.8.1.031