DOI QR코드

DOI QR Code

Post-Correlation Analysis for Shake Table Test of Square Liquid Storage Tank

정사각형 수조 진동대실험에 대한 상관해석

  • 손일민 (전남대학교 대학원 건설환경공학과) ;
  • 김재민 (전남대학교 해양토목공학과) ;
  • 최형석 (부산대학교 지진방재연구센터) ;
  • 백은림 (부산대학교 지진방재연구센터)
  • Received : 2016.08.24
  • Accepted : 2016.10.19
  • Published : 2017.01.01

Abstract

In this study, a post-correlation analysis for shaking table test of square water storage tank is presented for the use of advances in earthquake-resistant design of liquid storage tank. For this purpose, the ANSYS CFX program is selected for the CFD analysis. Sensitivity analysis for resonant sloshing motion in terms of grid size and turbulence model suggested that (1) horizontal grid size as well as vertical grid size is a key variable in the sloshing analysis, and (2) the SST turbulence model is best for the sloshing analysis. Finally, correlation analyses for a non-resonant harmonic input and scaled earthquake excitation of the El Centro (1940) NS component are carried out using the grid and turbulence model established through the post-correlation analysis for the resonant motion. As a result, sloshing time histories by the CFD analysis agreed very well with the test results.

이 연구에서는 유체저장탱크의 내진 설계 고도화에 활용하기 위하여 정사각형 수조의 슬러싱 진동대실험에 대한 상관해석을 수행하였다. 이를 위하여 CFD 프로그램인 ANSYS CFX를 이용하였다. CFD 해석 프로그램 검증을 위해 슬러싱 공진이 발생하는 운동에 대한 해석모델의 요소크기 및 난류모델에 대한 슬러싱응답의 민감도해석을 수행하였다. 그 결과, 수직방향 요소크기 뿐만 아니라 수평방향 요소크기에 따라 수위 예측에 민감한 영향을 미치는 것을 알 수 있었다. 또한, SST 난류모델을 사용한 CFD해석 결과가 실험 결과와 매우 잘 일치하는 것을 알 수 있었다. 이로부터 결정된 CFX 해석모델을 사용하여, 가진 주파수와 가진 진폭이 다른 3가지 실험 결과에 대하여 상관해석을 수행하였다. 그 결과, CFD해석모델을 사용하여 지진해석을 수행할 경우, 슬러싱응답이 실험 결과와 매우 잘 일치하는 것을 알 수 있었다.

Keywords

References

  1. ANSYS CFX (2016), ANSYS CFX User's Guide Releases 17.0, Canonsburg, PA, ANSYS, Inc.
  2. API 620 (2002), Design and Construction of Large Welded Low Pressure Storage, American Petroleum Institute.
  3. API 650 (2007), Welded Tanks for Oil Storage, American Petroleum Institute.
  4. Baek, E. R., Choi, H. S., Kim, J. M., and Kim, N. S. (2016), Shake Table Test of Liquid Storage Tank for Nonlinear Fluid Sloshing Analysis, The Korean Society for Noise and Vibration Engineering.
  5. Chen, W., Haroun, M. A., and Liu, F. (1996), Large Amplitude Liquid Sloshing in Seismically Excited Tanks, Earthquake Engineering and Structural Dynamics, 25, 653-669. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<653::AID-EQE513>3.0.CO;2-H
  6. Choi, K. H., and Cho, S. Y. (2007), Seismic Response of Cylindrical Steel Tanks Considering Fluid-Structure Interaction, International Journal of Steel Structures, 7(2), 147-152.
  7. Dhole, A., Raval, C., and Shrivastava, R. (2015), Fluid Structure Interaction Simulation of Automotive Fuel Tank Sloshing using Nonlinear Fluid Properties, SAE Technical Paper 2015-26-0240, doi:10.4271/2015-26-0240
  8. Eurocode 8 (1998), Design Provisions of Earthquake Resistance of Structures, Part 4: Silos, Tanks and Pipelines, European Committee for Standardization, Brussels.
  9. Goudarzi, M. A., and Sabbagh-Yazdi, S. R. (2009), Numerical Investigation on Accuracy of Mass Spring Models for Cylindrical Tanks under Seismic Excitation, International Journal of Civil Engineering, 7(3), 190-202.
  10. Ha, M. H., Kim, D. H., Choi, H. I., Cheong, C. L., and Kwon, S. H. (2012), Numerical and Experimental Investigations into Liquid Sloshing in a Rectangular Tank, Proceedings of Advances in Civil, Environmental, and Materials Research 2012, Seoul, Korea (in Korea).
  11. Haroun, M. A., and Chen, W. (1994), Correlation of Computed and Observed Large-amplitude Liquid-sloshing Under Sinusoidal Base Excitation, Proceedings of IMAC XII - 12th International Modal Analysis Conference, Session 10.
  12. Hosseini, M., Vosoughifar, H., and Farshadmanesh, P. (2013), Simplified Dynamic Analysis of Sloshing in Rectangular Tanks with Multiple Vertical Baffles, Journal of Water Science Research, 5(1), 19-30.
  13. Hwang, S. Y. (2015), Numerical Simulation of Multiphase FSI Analysis of the LNG Cargo Insulation Subjected to Sloshing Pressure, Ph.D. Dissertation, Inha University, Korea (in Korea).
  14. Ibrahim, R. A., Pilipchuk, V. N., and Ikeda, T. (2001), Recent Advances in Liquid Sloshing Dynamics, Applied Mechanics Review, ASME, 54(2), 133-199. https://doi.org/10.1115/1.3097293
  15. Kang, B. R. (2012), Simplified Method for Analysis of Fluid-Structure-Soil Interactions Considering Cylindrical LNG Storage Tank, M.Sc. Dissertation, Chonnam National University, Korea (in Korea).
  16. Kim, J. M., Jang, S. H., and Yun, C. B. (2002), Fluid-Structure-Soil Interaction Analysis of Cylindrical Liquid Storage Tanks Subjected to Horizontal Earthquake Loading, Structural Engineering and Mechanics, 13(6), 615-638. https://doi.org/10.12989/sem.2002.13.6.615
  17. Kim, J. M., Kang, B. R., Park, H. J., Yun, C. B., and Jung, M. J. (2012), Issues in Modeling Pile-Supported Above-Ground LNG Storage Tank for Seismic Response Analysis, Computational Structure Engineering Institute of Korea Conference, 589-593.
  18. Kim, J. H., Song, S. Y., Son, W. B. and Lim, Y. M. (2011), Study on the Accuracy Improvement of Simplified Liquid Storage Tanks Seismic Design, Journal of the Earthquake Engineering Society of Korea, 15, 93-98.
  19. K-water (2015), A Planning Research : Development of K-water Numerical Analysis Model for Integrated Water Resources Management, Korea Water Resources Corporation.