DOI QR코드

DOI QR Code

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks

균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구

  • Received : 2016.09.22
  • Accepted : 2016.10.25
  • Published : 2017.01.01

Abstract

In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

본 연구에서는 시멘트 복합체의 균열을 자기치유 할 수 있는 자기치유 캡슐을 제조하기 위한 일환의 기초 연구로써 자기치유 캡슐용 코어재료에 무기계 기반 코어재료를 적용하기 위하여 액상형태의 무기 소재를 기반으로한 코어재료를 제조하였다. 제조된 무기계 기반 코어재료는 캡슐화를 진행하기 전에 무기계 기반 코어재료를 직접 시멘트 복합체에 적용하여 균열부의 균열수복 성능뿐만 아니라 시멘트 복합체의 성능에 미치는 영향을 검토하였다. 평가결과, 무기계 기반 코어재료는 압축 및 부착강도 향상효과가 있는 것을 확인하였으며, 부착, 내흡수, 내투수 및 동결융해 저항 성능을 가진 것으로 판단된다. 본 논문의 결과를 통하여 자기치유 캡슐용 무기계 기반 코어재료를 적용할 경우에 얻을 수 있는 시멘트 복합체의 성능 및 차후 진보화된 자기치유 캡슐기술의 기반 자료로써 활용하고자 한다.

Keywords

References

  1. AHN, T. H. and Kishi, T. (2010), Crack Self-healing Behavior of Cementitious Composites Incorporating Various Mineral Admixtures, Journal of Advanced Concrete Technology, 8(2), 171-186. https://doi.org/10.3151/jact.8.171
  2. An, E. J. and Shin, M. S. (2014), Healing Mechanisms and Assessment Techniques of Self-healing Concrete, Proceeding of Korea Concrete Institute, 26(2), 477-479 (in Korean).
  3. Blaiszika, B. J., Sottos, N. R., and White, S. R. (2007), Nanocapsules for Self-healing Materials, Journal of Composites Science and Technology, 68(3), 978-986.
  4. Erik, S. and Senot, S. (2013), Addressing Infrastructure Durability and Sustainability by Self Healing Mechanisms - Recent Advances in Self Healing Concrete and Asphalt, Journal of Procedia Engineering, The 2nd International Conference, 54, 39-57.
  5. Hunger, M., Entrop, A. G., Mandilaras, I., Brouwers, H. J. H., and Founti, M. (2009), The Behavior of Self-Compacting Concrete Containing Micro-Encapsulated Phase Change Materials, Journal of Cement & Concrete Composites, 31(10), 731-743. https://doi.org/10.1016/j.cemconcomp.2009.08.002
  6. Kim, P. S., Jo, C. K., Ju, T. H., Choi, Y. C., and Lee, J. K. (2003), Preparation and Thermal Characteristics of Microencapsulated PCM for None Supercooling Phenomenon, proceeding of The Korean Society for Energy, 225-228 (in Korean).
  7. Kishi, T., AHN, T. H., Morita, M., and Koide, T. (2011), Field Test of Self-Healing Concrete on the Recovery of Water Tightness to Leakage through Cracks, 3rd International Conference on Self-Healing Materials 2011, Bath-United Kingdom, June 27-29, 297-298.
  8. Korea Concrete Institute (2009), Concrete Standard Specification, Korea Concrete Institute Korea (in Korean).
  9. Shazim Ali Memon, H. Z. Cui, H. Z., and Feng, X. (2014), Utilization of Macro Encapsulated Phase Change Materials for the Development of Thermal Energy Storage and Structural Lightweight Aggregate Concrete, Journal of Applied Energy, 139, 43-55.
  10. Song, Y. K., Jo, Y. H., Lim, Y. J., Cho, S. Y., Yu, H. C., Ryu, B. C., Lee, S. I., and Chung C. M. (2013), Sunlight-induced Self-Healing of a Microcapsule-type Protective Coating, Journal of A C S Applied Materials and Interfaces, 5(4), 1378-1384. https://doi.org/10.1021/am302728m
  11. Tatyana, N., Kim, D.-J., Lars Thorslund Pedersen and Soren Kiil, (2012), Microcapsule-based Self-Healing Anticorrosive Coatings: Capsule Size, Coating Formulation, and Exposure Testing, Journal of Organic Coatings, 75(4), 309-318. https://doi.org/10.1016/j.porgcoat.2012.08.002
  12. Wang, X., Xing, F., Zhang, M., Han, N., and Qian, Z. (2003), Experimental Study on Cementitious Composites Embedded with Organic Microcapsules, Journal of Materials, 6(9), 4064-4081.