DOI QR코드

DOI QR Code

Effect of Red-edge Band to Estimate Leaf Area Index in Close Canopy Forest

울폐산림의 엽면적지수 추정을 위한 적색경계 밴드의 효과

  • Lee, Hwa-Seon (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • 이화선 (인하대학교 공간정보공학과) ;
  • 이규성 (인하대학교 공간정보공학과)
  • Received : 2017.09.24
  • Accepted : 2017.10.18
  • Published : 2017.10.30

Abstract

The number of spaceborne optical sensors including red-edge band has been increasing since red-edge band is known to be effective to enhance the information content on biophysical characteristics of vegetation. Considering that the Agriculture and Forestry Satellite is planning to carry an imaging sensor having red-edge band, we tried to analyze the current status and potential of red-edge band. As a case study, we analyzed the effect of using red-edge band and tried to find the optimum band width and wavelength region of the red-edge band to estimate leaf area index (LAI) of very dense tree canopy. Field spectral measurements were conducted from April to October over two tree species (white oak and pitch pine) having high LAI. Using the spectral measurement data, total 355 red-edge bands reflectance were simulated by varying five band width (10 nm, 20 nm, 30 nm, 40 nm, 50 nm) and 71 central wavelength. Two red-edge based spectral indices(NDRE, CIRE) were derived using the simulated red-edge band and compared with the LAI of two tree species. Both NDRE and CIRE showed higher correlation coefficients with the LAI than NDVI. This would be an alternative to overcome the limitation of the NDVI saturation problem that NDVI has not been effective to estimate LAI over very dense canopy situation. There was no significant difference among five band widths of red-edge band in relation to LAI. The highest correlation coefficients were obtained at the red-edge band of center wavelength near the 720 nm for the white oak and 710 nm for the pitch pine. To select the optimum band width and wavelength region of the red-edge band, further studies are necessary to examine the relationship with other biophysical variables, such as chlorophyll, nitrogen, water content, and biomass.

적색경계밴드(red-edge band)가 식물의 생물리적 특성과 밀접한 관계를 가지고 있다고 알려지고 있으며, 이에 따라 최근 적색경계밴드를 포함한 위성영상센서가 증가하고 있다. 본 연구는 향후 농림업중형위성에 적색경계밴드 탑재를 계획하고 있는 점을 감안하여, 적색경계밴드와 관련된 연구 현황과 활용 가치를 분석하고자 한다. 수관울폐도가 높은 우리나라 산림의 엽면적지수(Leaf Area Index, LAI) 추정에 있어서 적색경계밴드의 효과를 분석하였고, 더 나아가 LAI 추정을 위한 최적의 파장폭과 파장영역을 도출하고자 하였다. LAI가 5 이상인 갈참나무와 리기다소나무를 대상으로 4월부터 10월까지 시계열 분광반사 측정자료를 이용하여 LAI와의 상관관계를 분석하였다. 분광반사측정자료에서 5개의 파장폭(10 nm, 20 nm, 30 nm, 40 nm, 50 nm)과 71개의 중심파장(680 nm부터 750 nm까지 1 nm 간격)을 달리하여 모두 355개의 적색경계밴드를 모의 생성했다. 적색경계밴드를 기반으로 하는 두 개의 분광지수 NDRE(normalized difference red-edge index)와 CIRE(chlorophyll index red-edge)를 산출하여 LAI와 상관관계를 분석하였다. 적색경계밴드 기반의 분광지수인 NDRE 및 CIRE는 수관울폐도가 높은 갈참나무와 리기다소나무의 LAI와 높은 상관관계를 얻을 수 있었다. 이는 수관울폐도가 높은 국내 산림에서 일반적으로 사용되는 NDVI가 LAI와의 상관관계가 낮게 나타났던 한계를 해결할 수 있는 가능성을 보여주었다. 10 nm부터 50 nm까지 적색경계밴드의 파장폭 효과는 산림의 LAI와 관계에서 큰 차이를 보이지 않았다. LAI와 최대 상관관계를 보이는 적색경계밴드의 중심파장은 갈참나무에서는 720 nm 부근, 그리고 리기다소나무에서는 710 nm 주변으로 나타났다. 우리나라 농작물 및 산림의 식생정보 획득과 모니터링을 위한 최적의 적색경계밴드의 파장폭과 파장영역을 결정하기 위해서는 다른 생물리적인자(엽록소, 질소, 수분함량, 생체량 등)와의 관계도 충분히 고려하여야 한다.

Keywords

References

  1. Adelabu, S., O. Mutanga, and E. Adam, 2014. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels, ISPRS Journal of Photogrammetry and Remote Sensing, 95(2014): 34-41. https://doi.org/10.1016/j.isprsjprs.2014.05.013
  2. Baret, F., S. Jacquemoud, G. Guyot, and C. Leprieur, 1992. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands, Remote Sensing of Environment, 41(2-3): 133-142. https://doi.org/10.1016/0034-4257(92)90073-S
  3. Carlson, T.N. and D.A. Ripley, 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index, Remote Sensing of Environment, 62(3): 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  4. Cho, M.A. and A.K. Skidmore, 2006. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method, Remote Sensing of Environment, 101(2): 181-193. https://doi.org/10.1016/j.rse.2005.12.011
  5. Clevers, J.G. and A.A. Gitelson, 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3, International Journal of Applied Earth Observation and Geoinformation, 23(2013): 344-351. https://doi.org/10.1016/j.jag.2012.10.008
  6. Clevers, J.G., L. Kooistra, and M.M.M. van den Brande, 2017. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop, Remote Sensing, 9(5): 405. https://doi.org/10.3390/rs9050405
  7. Curran, P.J., J.L. Dungan, and H.L. Gholz, 1992. Seasonal LAI in slash pine estimated with Landsat TM, Remote Sensing of Environment, 39(1): 3-13. https://doi.org/10.1016/0034-4257(92)90136-8
  8. Dash, J. and P. Curran, 2007. Evaluation of the MERIS terrestrial chlorophyll index (MTCI), Advances in Space Research, 39(1): 100-104. https://doi.org/10.1016/j.asr.2006.02.034
  9. Dawson, T. and P. Curran, 1998. Technical note A new technique for interpolating the reflectance red edge position, International Journal of Remote Sensing, 19(11): 2133-2139. https://doi.org/10.1080/014311698214910
  10. Delegido, J., J. Verrelst, C. Meza, J. Rivera, L. Alonso, and J. Moreno, 2013. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems, European Journal of Agronomy, 46(2013): 42-52. https://doi.org/10.1016/j.eja.2012.12.001
  11. Dube, T., O. Mutanga, M. Sibanda, C. Shoko, and A. Chemura, 2017. Evaluating the influence of the Red Edge band from RapidEye sensor in quantifying leaf area index for hydrological applications specifically focussing on plant canopy interception, Physics and Chemistry of the Earth, Parts A/B/C, 100(2017): 73-80. https://doi.org/10.1016/j.pce.2017.02.016
  12. Eitel, J.U., L.A. Vierling, M.E. Litvak, D.S. Long, U. Schulthess, A.A. Ager, D.J. Krofcheck, and L. Stoscheck, 2011. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland, Remote Sensing of Environment, 115(12): 3640-3646. https://doi.org/10.1016/j.rse.2011.09.002
  13. Elvidge, C.D. and Z. Chen, 1995. Comparison of broadband and narrow-band red and near-infrared vegetation indices, Remote Sensing of Environment, 54(1): 38-48. https://doi.org/10.1016/0034-4257(95)00132-K
  14. Gitelson, A.A., Y. Gritz, and M.N. Merzlyak, 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves, Journal of Plant Physiology, 160(3): 271-282. https://doi.org/10.1078/0176-1617-00887
  15. Gitelson, A.A., 2004. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation, Journal of Plant Physiology, 161(2): 165-173. https://doi.org/10.1078/0176-1617-01176
  16. Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada, and I.B. Strachan, 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sensing of Environment, 90(3): 337-352. https://doi.org/10.1016/j.rse.2003.12.013
  17. Herrmann, I., A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis, and D. Bonfil, 2011. LAI assessment of wheat and potato crops by VEN${\mu}$S and Sentinel-2 bands, Remote Sensing of Environment, 115(8): 2141-2151. https://doi.org/10.1016/j.rse.2011.04.018
  18. Hong, S.Y., J. Hur, J. Ahn, J. Lee, B. Min, C. Lee, Y. Kim, K.D. Lee, S. Kim, and G.Y. Kim, 2012. Estimating rice yield using MODIS NDVI and meteorological data in Korea, Korean Journal of Remote Sensing, 28(5): 509-520 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.5.4
  19. Horler, D., J. Barber, and A. Barringer, 1980. Effects of heavy metals on the absorbance and reflectance spectra of plants, International Journal of Remote Sensing, 1(2): 121-136. https://doi.org/10.1080/01431168008547550
  20. Immitzer, M., F. Vuolo, and C. Atzberger, 2016. First experience with Sentinel-2 data for crop and tree species classifications in central Europe, Remote Sensing, 8(3): 166. https://doi.org/10.3390/rs8030166
  21. Kim, S., S.Y. Hong, K.A. Sudduth, Y. Kim, and K. Lee, 2012. Comparing LAI estimates of corn and soybean from vegetation indices of multiresolution satellite images, Korean Journal of Remote Sensing, 28(6): 597-609. https://doi.org/10.7780/kjrs.2012.28.6.1
  22. Korhonen, L., P. Packalen, and M. Rautiainen, 2017. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index, Remote Sensing of Environment, 195(2017): 259-274. https://doi.org/10.1016/j.rse.2017.03.021
  23. Kross, A., H. McNairn, D. Lapen, M. Sunohara, and C. Champagne, 2015. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops, International Journal of Applied Earth Observation and Geoinformation, 34(2015): 235-248. https://doi.org/10.1016/j.jag.2014.08.002
  24. Kuusk, A., 1998. Monitoring of vegetation parameters on large areas by the inversion of a canopy reflectance model, International Journal of Remote Sensing, 19(15): 2893-2905. https://doi.org/10.1080/014311698214334
  25. Lee, K., S. Kim, Y. Park, and K. Jang, 2003. Generation of Forest Leaf Area Index (LAI) Map Using Multispectral Satellite Data and Field Measurements, Korean Journal of Remote Sensing, 19(5): 371-380. https://doi.org/10.7780/kjrs.2003.19.5.371
  26. Lee, K., W.B. Cohen, R.E. Kennedy, T.K. Maiersperger, and S.T. Gower, 2004. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes, Remote Sensing of Environment, 91(3): 508-520. https://doi.org/10.1016/j.rse.2004.04.010
  27. Lee, K., S. Kim, J. Park, T. Kim, Y. Park, and C. Woo, 2006. Estimation of forest LAI in close canopy situation using optical remote sensing data, Korean Journal of Remote Sensing, 22(5): 305-311. https://doi.org/10.7780/kjrs.2006.22.5.305
  28. Mutanga, O., E. Adam, and M.A. Cho, 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm, International Journal of Applied Earth Observation and Geoinformation, 18(2012): 399-406. https://doi.org/10.1016/j.jag.2012.03.012
  29. Myneni, R.B., S. Hoffman, Y. Knyazikhin, J. Privette, J. Glassy, Y. Tian, Y. Wang, X. Song, Y. Zhang, and G. Smith, 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sensing of Environment, 83(1): 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3
  30. Peddle, D.R., F.G. Hall, and E.F. LeDrew, 1999. Spectral mixture analysis and geometric-optical reflectance modeling of boreal forest biophysical structure, Remote Sensing of Environment, 67(3): 288-297. https://doi.org/10.1016/S0034-4257(98)00090-X
  31. Pu, R., P. Gong, G.S. Biging, and M.R. Larrieu, 2003. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 916-921. https://doi.org/10.1109/TGRS.2003.813555
  32. Ramoelo, A., A.K. Skidmore, M.A. Cho, M. Schlerf, R. Mathieu, and I.M. Heitkonig, 2012. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor, International Journal of Applied Earth Observation and Geoinformation, 19(2012): 151-162. https://doi.org/10.1016/j.jag.2012.05.009
  33. Schuster, C., M. Forster, and B. Kleinschmit, 2012. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data, International Journal of Remote Sensing, 33(17): 5583-5599. https://doi.org/10.1080/01431161.2012.666812
  34. Shin, J. and K. Lee, 2010. Relationship analysis between leaf area index and spectral reflectance under full canopy coverage situation, Proc. of 2010 the Korean Society of Remote Sensing Conference, Incheon, KOREA, Mar. 26, vol. 13, pp. 22-27 (in Korean).
  35. Sibanda, M., O. Mutanga, and M. Rouget, 2015. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments, ISPRS Journal of Photogrammetry and Remote Sensing, 110(2015): 55-65. https://doi.org/10.1016/j.isprsjprs.2015.10.005
  36. Sibanda, M., O. Mutanga, M. Rouget, and L. Kumar, 2017a. Estimating Biomass of Native Grass Grown under Complex Management Treatments Using WorldView-3 Spectral Derivatives, Remote Sensing, 9(1): 55. https://doi.org/10.3390/rs9010055
  37. Sibanda, M., O. Mutanga, and M. Rouget, 2017b. Testing the capabilities of the new WorldView-3 space-borne sensor's red-edge spectral band in discriminating and mapping complex grassland management treatments, International Journal of Remote Sensing, 38(1): 1-22. https://doi.org/10.1080/01431161.2016.1259678
  38. Thomas, J. and H. Gausman, 1977. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops, Agronomy Journal, 69(5): 799-802. https://doi.org/10.2134/agronj1977.00021962006900050017x
  39. Turner, D.P., W.B. Cohen, R.E. Kennedy, K.S. Fassnacht, and J.M. Briggs, 1999. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites, Remote Sensing of Environment, 70(1): 52-68. https://doi.org/10.1016/S0034-4257(99)00057-7

Cited by

  1. Machine Learning for Tree Species Classification Using Sentinel-2 Spectral Information, Crown Texture, and Environmental Variables vol.12, pp.12, 2017, https://doi.org/10.3390/rs12122049
  2. 유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정 vol.37, pp.6, 2017, https://doi.org/10.7780/kjrs.2021.37.6.1.22