DOI QR코드

DOI QR Code

Changes in Growth Rate and Carbon Sequestration by Age of Landscape Trees

조경수목의 수령에 따른 생장율과 탄소흡수량 변화

  • Jo, Hyun-Kil (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Park, Hye-Mi (Dept. of Landscape Architecture, Graduate School, Kangwon National University)
  • 조현길 (강원대학교 생태조경디자인학과) ;
  • 박혜미 (강원대학교 대학원 조경학과)
  • Received : 2017.08.16
  • Accepted : 2017.10.20
  • Published : 2017.10.31

Abstract

Greenspace enlargement through proper landscape planting is essential to creating a low carbon society. This study analyzed changes in stem diameter growth rates(DGR), ratios of below ground/above ground biomass(B/A), and carbon sequestration by age of major landscape tree species. Landscape trees for study were 11 species and 112 individuals planted in middle region of Korea. The DGR and B/A were analyzed based on data measured through a direct harvesting method including root digging. The carbon sequestration by tree age was estimated applying the derived regression models. The annual DGR at breast height of trees over 30 years averaged 0.72 cm/yr for deciduous species and 0.83 cm/yr for evergreen species. The B/A of the trees over 30 years averaged 0.23 for evergreen species and 0.40 for deciduous species, about 1.7 times higher than evergreen species. The B/A by age in this study did not correspond to the existing result that it decreased as tree ages became older. Of the study tree species, cumulative carbon sequestration over 25 years was greatest with Zelkova serrata(198.3 kg), followed by Prunus yedoensis(121.7 kg), Pinus koraiensis(117.5 kg), and Pinus densiflora (77.4 kg) in that order. The cumulative carbon sequestration by Z. serrata offset about 5% of carbon emissions per capita from household electricity use for the same period. The growth rates and carbon sequestration for landscape trees were much greater than those for forest trees even for the same species. Based on these results, landscape planting and management strategies were explored to improve carbon sequestration, including tree species selection, planting density, and growth ground improvement. This study breaks new ground in discovering changes in growth and carbon sequestration by age of landscape trees and is expected to be useful in establishing urban greenspaces towards a low carbon society.

적합한 조경식재를 통한 녹지 확충은 저탄소 사회를 구현하는데 필수적 역할이다. 본 연구는 주요 조경수종의 수령에 따른 줄기 직경 생장률, 지하부/지상부 생체량비 및 탄소흡수량의 변화를 분석하였다. 연구대상 수목은 중부지방에 식재된 11개 수종 및 112개체이었다. 줄기 직경 생장률과 지하부/지상부 생체량비는 근굴취를 포함한 직접수확법을 통해 측정한 자료를 바탕으로 분석하였다. 수령에 따른 탄소흡수량 변화는 유도한 계량모델을 적용하여 산정하였다. 연구대상 수목의 수령 30년에 걸친 연간 흉고직경 생장률은 낙엽수 평균 0.72cm/년 및 상록수 0.83cm/년이었다. 수령 전체의 지하부/지상부 생체량비는 낙엽수 평균 0.40 및 상록수 0.23으로서, 낙엽수의 뿌리 생체량은 상록수보다 약 1.7배 많았다. 수령별 그 생체량비는 수령 증가에 따라 감소한다는 기존 연구 결과와 상이하였다. 수령 25년까지의 누적 탄소흡수량은 느티나무가 198.3kg으로서 가장 많았고, 이어서 왕벚나무 121.7kg, 잣나무 117.5kg, 소나무 77.4kg 등의 순이었다. 느티나무의 누적 탄소흡수량은 동일 기간 가정용 전력소비에 따른 1인당 탄소배출량의 약 5%를 상쇄하는 셈이었다. 연구대상 조경수의 생장률과 탄소흡수능은 동일 수종의 산림수목보다 훨씬 양호하였다. 연구 결과에 근거하여, 수종 선정, 식재밀도, 생장지반 조성 등을 포함하여 탄소흡수를 증진하기 위한 조경식재 및 관리방안을 모색하였다. 본 연구는 수령에 따른 조경수의 생장 및 탄소흡수 변화를 구명하는 초석 연구로서 저탄소 도시녹지 조성에 유용하길 기대한다.

Keywords

References

  1. Bray, J. R.(1963) Root production and the estimation of net productivity. Canadian Journal of Botany 41: 65-71. https://doi.org/10.1139/b63-007
  2. Cairns, M. A., S. Brown, E. H. Helmer and G. A. Baumgardner (1997) Root biomass allocation in the world's upland forests. Oecologia 111: 1-11. https://doi.org/10.1007/s004420050201
  3. Cheong, W. D.(2016) Plan to Counteract Climate Change I. (http://opm.go.kr/pmo/news/news01.jsp?mode=view&article_no=92754)
  4. Chung, S. H., M. G. Choi and G. S. Lee(1983) A study on the diameter increment of major hardwood in middle area of Korea. Journal of Korean Forest Society 60: 24-29.
  5. Hermann, R. K.(1977) Growth and production of tree roots: A review. In J. K. Marshall, ed., The Belowground Ecosystem: A Synthesis of Plant-Associated Processes. Fort Collins, Colorado: Colorado State University, Range Science Department. pp. 7-28.
  6. IEA(International Energy Agency)(2014) Electricity Information 2014. Paris.
  7. Jo, H. K.(1993) Landscape Carbon Budgets and Planning Guidelines for Greenspaces in Urban Residential Lands. Ph. D. Dissertation. University of Arizona, Tucson. USA.
  8. Jo, H. K.(1999) Energy consumption and carbon release from management of urban vegetation. Korean Journal of Environment and Ecology 13(2): 101-108.
  9. Jo, H. K. and D. H. Cho(1998) Annual $CO_2$ uptake by urban popular landscape tree species. Journal of the Korean Institute of Landscape Architecture 26(2): 38-53.
  10. Jo, H. K. and E. G. McPherson (1995) Carbon storage and flux in urban residential greenspace. Journal of Environmental Management 45: 109-133.
  11. Jo, H. K. and H. M. Park(2016) Exploring planting strategies through monitoring of a greenspace established in the riparian zone - The case of an implementation site in Gapyeong County. Journal of Environmental Science International 25(12): 1689-1699. https://doi.org/10.5322/JESI.2016.25.12.1689
  12. Jo, H. K., J. Y. Kim, and H. M. Park(2013) Carbon storage and uptake by evergreen trees for urban landscape - For Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 27(5): 571-578. https://doi.org/10.13047/KJEE.2013.27.5.571
  13. Jo, H. K., J. Y. Kim, and H. M. Park(2014) Carbon reduction effects of urban landscape trees and development of quantitative models - For five native species. Journal of the Korean Institute of Landscape Architecture 42(5): 13-21. https://doi.org/10.9715/KILA.2014.42.5.013
  14. Jo, H. K., K. E. Lee, Y. H. Yun, and O. H. Seo(1998) Land use and greenspace structure in several cities of Kangwon Province. Journal of the Korean Institute of Landscape Architecture 25(4): 171-183.
  15. Jo, H. K. and T. W. Ahn(2000) Indicators of carbon storage and uptake by tree growth in natural ecosystem. Korean Journal of Environment and Ecology 14(3): 175-182.
  16. Jo, H. K. and T. W. Ahn(2001) Role of atmospheric purification by trees in urban ecosystem - In the case of Yongin. Journal of the Korean Institute of Landscape Architecture 29(3): 38-45.
  17. Jo, H. K. and T. W. Ahn(2012) Carbon storage and uptake by deciduous tree species for urban landscape. Journal of the Korean Institute of Landscape Architecture 40(5): 160-168. https://doi.org/10.9715/KILA.2012.40.5.160
  18. KFRI(Korea Forest Research Institute)(2010) Greenhouse Gas Inventory of Urban Green Areas - In Case of Seoul Metropolis. Research Report pp. 1-42.
  19. KFRI(Korea Forest Research Institute)(2012) Volume, Biomass, and Stand Yield Table of Forest Trees. Research Report pp. 186-206.
  20. KFRI(Korea Forest Research Institute)(2014) Carbon Emission Factors and Biomass Allometric Equations by Species in Korea. Research Report pp. 44-70.
  21. Nowak, D. J.(1994) Atmospheric carbon dioxide reduction by Chicago's urban forest. In E. G. McPherson, D. J. Nowak, and R. A. Rowntree, eds., Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report NE-186. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station. pp. 83-94.
  22. Nowak, D. J. and D. E. Crane(2002) Carbon storage and sequestration by urban trees in the USA. Environmental Pollution 116: 381-389. https://doi.org/10.1016/S0269-7491(01)00214-7
  23. Park, W. G.(1987) A Study on the Diameter Growth and Key Year for Pinus koraiensis and Pinus densiflora. Master Thesis Dissertation. Kangwon National University, Chuncheon. Korea.
  24. Whittaker, R. H.(1962) Net production relations of shrubs in the Great Smoky Mountains. Ecology 43(3): 357-377. https://doi.org/10.2307/1933366
  25. Whittaker, R. H. and P. L. Marks(1975) Methods of assessing terrestrial productivity. In H. Lieth and R. H. Whittaker, eds., Primary Productivity of the Biosphere. New York: Springer-Verlag. pp. 55-118.
  26. http://www.itreetools.org
  27. http://www.law.go.kr
  28. http://www.molit.go.kr/portal.do
  29. https://www.gir.go.kr