DOI QR코드

DOI QR Code

Development of A Three-Variable Canopy Photosynthetic Rate Model of Romaine Lettuce (Lactuca sativa L.) Grown in Plant Factory Modules Using Light Intensity, Temperature, and Growth Stage

광도, 온도, 생육 시기에 따른 식물공장 모듈 재배 로메인 상추의 3 변수 군락 광합성 모델 개발

  • Jung, Dae Ho (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Yoon, Hyo In (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Son, Jung Eek (Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 정대호 (서울대학교 식물생산과학부) ;
  • 윤효인 (서울대학교 식물생산과학부) ;
  • 손정익 (서울대학교 식물생산과학부)
  • Received : 2017.09.20
  • Accepted : 2017.10.09
  • Published : 2017.10.31

Abstract

The photosynthetic rates of crops depend on growth environment factors, such as light intensity and temperature, and their photosynthetic efficiencies vary with growth stage. The objective of this study was to compare two different models expressing canopy photosynthetic rates of romaine lettuce (Lactuca sativa L., cv. Asia Heuk romaine) using three variables of light intensity, temperature, and growth stage. The canopy photosynthetic rates of the plants were measured 4, 7, 14, 21, and 28 days after transplanting at closed acrylic chambers ($1.0{\times}0.8{\times}0.5m$) using light-emitting diodes, in which indoor temperature and light intensity were designed to change from 19 to $28^{\circ}C$ and 50 to $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. At an initial $CO_2$ concentration of $2,000{\mu}mol{\cdot}mol^{-1}$, the canopy photosynthetic rate began to be calculated with $CO_2$ decrement over time. A simple multiplication model expressed by simply multiplying three single-variable models and a modified rectangular hyperbola model were compared. The modified rectangular hyperbola model additionally included photochemical efficiency, carboxylation conductance, and dark respiration which vary with temperature and growth stage. In validation, $R^2$ value was 0.849 in the simple multiplication model, while it increased to 0.861 in the modified rectangular hyperbola model. It was found that the modified rectangular hyperbola model was more suitable than the simple multiplication model in expressing the canopy photosynthetic rates affected by environmental factors (light Intensity and temperature) and growth factor (growth stage) in plant factory modules.

광도와 온도 같은 환경 요인에 의해 광합성 속도가 변화하기도 하며, 생육 시기에 따른 광합성 효율의 변화가 수반되기도 한다. 본 연구에서는 흑로메인 상추(Lactuca sativa L., Asia Heuk romaine)를 이용하여 광도와 온도, 생육 시기에 따른 군락 광합성 속도를 표현하는 두 모델을 구축하고 비교하는 것을 목표로 하였다. 군락 광합성은 정식 후 4, 7, 14, 21, 28 일차 상추를 아크릴 챔버($1.0{\times}0.8{\times}0.5m$)에 넣어 측정하였으며, 이 때 챔버 내부의 온도는 $19^{\circ}C$에서 $28^{\circ}C$까지 변화시켰고 광원은 LED를 이용하여 50에서 $500{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$까지 변화시키며 실험하였다. 챔버 내부의 초기 이산화탄소 농도는 $2,000{\mu}mol{\cdot}mol^{-1}$로 설정하였으며, 시간에 따른 이산화탄소 농도의 변화율을 이용하여 군락 광합성 속도를 계산하였다. 각 환경요인을 표현하는 3개 식을 곱하여 만든 단순곱 모델을 구성하였다. 이와 동시에 온도와 생육 시기에 따라 변화하는 광화학 이용효율과 카르복실화 컨덕턴스, 호흡에 의한 이산화탄소 발생 속도를 포함하는 수정된 직각쌍곡선 모델을 구성하여 단순곱 모델과 비교하였다. 검증 결과 단순곱 모델은 0.849의 $R^2$ 값을 나타내었으며, 수정된 직각쌍곡선 모델은 0.861의 $R^2$ 값을 나타내었다. 수정된 직각쌍곡선 모델이 단순곱 모델에 비해 환경 요인(광도, 온도), 생육 요인(생육 시기)에 따른 군락 광합성 속도를 표현하는 데 더욱 적합한 모델인 것으로 판단하였다.

Keywords

References

  1. Acock, B., D.W. Hand, J.H.M. Thornley, and J.W. Wilson. 1976. Photosynthesis in stands of green peppers. An application of empirical and mechanistic models to controlled environment data. Ann. Bot. 40:1293-1307. https://doi.org/10.1093/oxfordjournals.aob.a085250
  2. Baker, J.T. and L.H. Allen Jr. 1993. Contrasting crop species responses to $CO_2$ and temperature: rice, soybean and citrus. Vegetatio 104:239-260.
  3. Bugbee, B. 1992. Steady-state canopy gas exchange: system design and operation. HortScience 27:770-776.
  4. Caliskan, O., M.S. Odabas, and C. Cirak. 2009. The modeling of the relation among the temperature and light intensity of groth in Ocimum basilicum L. J. Med. Plant. Res. 3:965-977.
  5. Caporn, S.J.M. 1989. The effects of oxides of nitrogen and carbon dioxide enrichment on photosynthesis and growth of lettuce (Lactuca sativa L.). New Phytol. 111:473-481. https://doi.org/10.1111/j.1469-8137.1989.tb00710.x
  6. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species. Planta 149:78-90. https://doi.org/10.1007/BF00386231
  7. Green, C.F. 1987. Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agric. For. Meteorol. 41:207-248. https://doi.org/10.1016/0168-1923(87)90080-3
  8. Heuvelink, E. 1996. Tomato growth and yield: quantitative analysis and synthesis. Dissertation. Wageningen Agric. Univ., Wageningen, pp. 326.
  9. Johnson, I.R., J.H.M. Thornley, J.M. Frantz, and B. Bugbee. 2010. A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and $CO_2$. Ann. Bot. 106:735-749. https://doi.org/10.1093/aob/mcq183
  10. Jones, J.W., E. Dayan, L.H. Allen, H. Van Keulen, and H. Challa. 1991. A dynamic tomato growth and yield model (TOMGRO). Trans. ASABE. 34:663-672. https://doi.org/10.13031/2013.31715
  11. Jones, H.G. and F. Tardieu. 1998. Modelling water relations of horticultural crops: a review. Sci. Hortic. 74:21-45. https://doi.org/10.1016/S0304-4238(98)00081-8
  12. Kaitala, V., P. Hari, E. Vapaavuori, and R. Salminen. 1982. A dynamic model for photosynthesis. Ann. Bot. 50:385-396. https://doi.org/10.1093/oxfordjournals.aob.a086378
  13. Kim, S. and H. Leith. 2003. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann. Bot. 91:771-781. https://doi.org/10.1093/aob/mcg080
  14. Park, K.S., K. Bekhzod, J.K. Kwon, and J.E. Son. 2016. Development of a coupled photosynthetic model of basil hydroponically grown in plant factories. Hortic. Environ. Biotechnol. 57:20-26. https://doi.org/10.1007/s13580-016-0019-7
  15. Larsen, R.U. 1990. Plant growth modelling by light and temperature. Acta Hortic. 272:235-242.
  16. Leith, J.H. and C.C. Pasian. 1990. A model for net photosynthesis of rose leaves as a function of photosynthetically active radiation, leaf temperature, and leaf age. J. Amer. Soc. Hort. Sci. 115:486-491.
  17. Lloyd, J. and J.A. Taylor. 1994. On the temperature dependence of soil respiration. Func. Ecol. 8:315-323. https://doi.org/10.2307/2389824
  18. Marcelis, L.F.M., E. Heuvelink, and J. Goudriaan. 1998. Modelling biomass production and yield of horticultural crops: a review. Sci. Hortic. 74:83-111. https://doi.org/10.1016/S0304-4238(98)00083-1
  19. Marshall, B. and P.V. Biscoe. 1980. A model for $C_3$ leaves describing the dependence of net photosynthesis on irradiance. J. Exp. Bot. 31:29-39. https://doi.org/10.1093/jxb/31.1.29
  20. Medina-Ruiz, C.A., I.A. Mercado-Luna, G.M. Soto-Zarazua, I. Torres-Pacheco, and E. Rico-Garcia. 2011. Mathematical modeling on tomato plants: A review. Afr. J. Agric. Res. 6:6745-6749.
  21. Mitchell, C.A. 1992. Measurement of photosynthetic gas exchange in controlled environments. HortScience 27:764-767.
  22. Noe, S.M. and C. Giersch. 2004. A simple dynamic model of photosynthesis in oak leaves: coupling leaf conductance and photosynthetic carbon fixation by a variable intercellular $CO_2$ pool. Funct. Plant Biol. 31:1195-1204. https://doi.org/10.1071/FP03251
  23. Prusinkiewicz, P. 1998. Modelling of spatial structure and development of plants in horticulture: a review. Sci. Hortic. 74:113-149. https://doi.org/10.1016/S0304-4238(98)00084-3
  24. Shimizu, H., M. Kushida, and W. Fujinuma. 2008. A growth model for leaf lettuce under greenhouse envrionments. Environ. Control Biol. 46:211-219. https://doi.org/10.2525/ecb.46.211
  25. Taormina R. and K.W. Chau. 2015. Neural network river forecasting with multi-objective fully informed particle swarm optimization. J. Hydroinform. 17:99-113. https://doi.org/10.2166/hydro.2014.116
  26. Thornley, J.H.M. 1974. Light fluctuations and photosynthesis. Ann. Bot. 38:363-373. https://doi.org/10.1093/oxfordjournals.aob.a084820
  27. Vaidyanathan, S. 2015. 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int. J. Pharmtech. Res. 8:632-640.
  28. Valladares, F., M.T. Allen, and R.W. Pearcy. 1997. Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occuring along a light gradient. Oecologia 111:505-514. https://doi.org/10.1007/s004420050264
  29. Yamazaki, K. 1982. Nutrient solution culture. Pak-kyo, Tokyo, p. 251.