DOI QR코드

DOI QR Code

Studies of Performance and Enlarged Capacity through Multi-stages Stacked Module in Membrane Capacitive Deionization Process

막 축전식 탈염 공정의 다단 적층 모듈을 통한 처리 용량 증대 및 이의 성능 연구

  • Song, Yye jin (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Yun, Won Seob (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 송예진 (한남대학교 화공신소재공학과) ;
  • 윤원섭 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2017.10.26
  • Accepted : 2017.10.29
  • Published : 2017.10.31

Abstract

In this study, the 10 stages stacked module was designed by increasing the number of unit cells in the membrane capacitive deionization(MCDI) process. The aminated polysulfone and sulfonated poly(ether ether ketone) were synthesized and coated on porous carbon electrode by casting method. The salt removal efficiency was measured for the 10 stage stacked module under the operation conditions of adsorption voltage and time, desorption voltage and time, flow rate and concentration of feed water, and di-valent solutions including $CaSO_4$, $MgCl_2$ and tap water. Typically, when 100 mg/L of NaCl as the feed was used, the salt removal efficiency was 98.3% at a flow rate of 100 mL/min, the adsorption condition of 1.2 V/3 min and desorption condition of -0.5 V/5 min.

본 연구에서는 막 결합형 축전식 탈염공정의 단위셀의 단수를 늘려 적층된 10단 형태의 모듈을 설계하여 제작하였다. 아민기가 함유된 폴리설폰(APSf)과 술폰기가 함유된 폴리이서이서케톤(SPEEK)을 합성하였으며 캐스팅법으로 다공성 탄소전극에 코팅하여 제조하였다. 10단 모듈에 대하여 흡착전압 및 시간, 탈착전압 및 시간, 공급액의 유속과 농도 등의 운전 조건과 $CaSO_4$, $MgCl_2$ 등의 2가 이온 용액과 수도수에 대하여 염 제거효율을 측정하였다. 대표적으로 NaCl 100 mg/L의 공급액을 사용하였을 때, 유속 100 mL/min, 흡착조건 1.2 V/3 min, 탈착조건 -0.5 V/5 min에서 98.3%의 염 제거효율을 보였다.

Keywords

References

  1. T. J. Welgemoed and C. F. Schutte, "Capacitive deionization technology: An alternative desalination solution", Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  2. S. Porada, R. Zhao, A. van der wal, V. presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  3. M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated caron cloth for capacitive deionization of NaCl solution", J Colloid and interface Sci., 264(2), 414 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  4. C. M. Yang, W. H. Choi, B. W. Cho, W. I. Cho, K. S. Yun, and H. S. Han, "Desalination effect of capacitive deionization process with porous carbonnano materials", J. Korean Ind. Eng. Chem., 15, 294 (2004).
  5. M. W. Ryoo and G, Seo, "Improvement in capacitive deionization function of actived carbon by titania modification", Water Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  6. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, "Desalination of a thermal power plant wastewater by membrane capacitive deionization", Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  7. K. W. Kang and T. S. Hwang, "Synthesis and characteristics of partially fluorinated poly(vinylidene fluroide)(PVDF) cation exchange membrane via direct sulfonation", Membr. J., 25, 406 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.406
  8. D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold, and A. Papastamataki, "Electrochemical demineralization of water with carbon Electrodes", Research Report, Oklahoma Univ. Research Institute (1966).
  9. D. H. Kim, J. S. Park, and M. S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152
  10. J. S. Koo, N. S. Kwak, and T. S. Hwang, "Synthesis and properties of nonfluoro aminated poly(vinylbenzyl chloride-co-ethyl methacrylate-costyrene) anion exchange membranes for MCDI process", Polymer(Korea), 36, 564 (2012).
  11. D. J. Kim and S. Y. Nam, "Development and application trend of bipolar membrane for electrodialysis", Membr. J., 23(5), 319 (2013).
  12. S. W. Chen, J. H. Jun, J. W. Rhim, and S. Y. Nam, "Studies on the preparation of the poly (vinyl alcohol) ion exchange membranes for direct methanol fuel cell", Membr. J., 13(3), 199 (2003).
  13. J. H. Yeo and J. H. Choi, "Enhancement of selective removal of nitrate ions from a mixture of anions using a carbon electrode coated with ion-exchange resin powder", Appl. Chem. Eng., 24, 49 (2013).
  14. H. Strathmann, Ion-exchange Membrane Separation Processes, Elsevier, Amsterdam (2004).
  15. C. J. Park, I. H. Kim, S. P. Kim, H. M. Lee, S. I. Cheong, H. S. Choi, and J. W. Rhim, "Preparation of poly(ethylenimine) anionic exchnage membrane impregnated in porous polyethylene membranes", Membr. J., 21, 94 (2011).
  16. J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, "Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI)", Macromol. Res., 23, 362 (2015).
  17. P. M. Biesheuvel, B. van Limpt, and A. van der Wal, "Dynamic adsorption/desorption process model for capacitive deionization", J. Phys. Chem. C, 113, 5636 (2009). https://doi.org/10.1021/jp809644s