DOI QR코드

DOI QR Code

Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains

  • Mannaa, Mohamed (Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University) ;
  • Oh, Ji Yeon (Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University) ;
  • Kim, Ki Deok (Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University)
  • Received : 2017.06.24
  • Accepted : 2017.07.25
  • Published : 2017.09.01

Abstract

In our previous study, three bacterial strains, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15, were selected as effective biocontrol agents against Aspergillus flavus on stored rice grains. In this study, we evaluated the inhibitory effects of the volatiles produced by the strains on A. flavus growth and aflatoxin production on stored rice grains. The three strains significantly reduced mycelial growth of A. flavus in dual-culture assays compared with the negative control strain, Sphingomonas aquatilis KU408, and an untreated control. Of these tested strains, volatiles produced by B. megaterium KU143 and P. protegens AS15 markedly inhibited mycelial growth, sporulation, and conidial germination of A. flavus on agar medium and suppressed the fungal populations in rice grains. Moreover, volatiles produced by these two strains significantly reduced aflatoxin production in the rice grains by A. flavus. To our knowledge, this is the first report of the suppression of A. flavus aflatoxin production in rice grains using B. megaterium and P. protegens volatiles.

Keywords

References

  1. Shotwell OL, Hesseltine CW, Stubblefield RD, Sorenson WG. Production of aflatoxin on rice. Appl Microbiol 1966;14:425-8.
  2. Oh JY, Jee SN, Nam Y, Lee H, Ryoo MI, Kim KD. Populations of fungi and bacteria associated with samples of stored rice in Korea. Mycobiology 2007;35:36-8. https://doi.org/10.4489/MYCO.2007.35.1.036
  3. Mannaa M, Kim KD. Microbe-mediated control of mycotoxigenic grain fungi in stored rice with focus on aflatoxin biodegradation and biosynthesis inhibition. Mycobiology 2016;44:67-78. https://doi.org/10.5941/MYCO.2016.44.2.67
  4. Dvorackova I. Aflatoxins and human health. Boca Raton (FL): CRC Press; 1989.
  5. Park JW, Choi SY, Hwang HJ, Kim YB. Fungal mycoflora and mycotoxins in Korean polished rice destined for humans. Int J Food Microbiol 2005;103:305-14. https://doi.org/10.1016/j.ijfoodmicro.2005.02.001
  6. Klich MA. Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience 2007;48:71-80. https://doi.org/10.1007/S10267-006-0336-2
  7. Squire RA. Ranking animal carcinogens: a proposed regulatory approach. Science 1981;214:877-80. https://doi.org/10.1126/science.7302565
  8. Yeh FS, Yu MC, Mo CC, Luo S, Tong MJ, Henderson BE. Hepatitis B virus, aflatoxins, and hepatocellular carcinoma in southern Guangxi, China. Cancer Res 1989;49:2506-9.
  9. Azziz-Baumgartner E, Lindblade K, Gieseker K, Rogers HS, Kieszak S, Njapau H, Schleicher R, McCoy LF, Misore A, DeCock K, et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environ Health Perspect 2005;113:1779-83. https://doi.org/10.1289/ehp.8384
  10. Krishnamachari KAVR, Nagarajan V, Bhar R, Tilak TBG. Hepatitis due to aflatoxicosis: an outbreak in western India. Lancet 1975;305:1061-3. https://doi.org/10.1016/S0140-6736(75)91829-2
  11. White DG, Toman J, Burnette DC, Jacobsen BJ. The effect of postharvest fungicide application on storage fungi of corn during ambient air drying and storage. Plant Dis 1993;77:562-8. https://doi.org/10.1094/PD-77-0562
  12. White DG, Toman J Jr. Effects of postharvest oil and fungicide application on storage fungi in corn following high-temperature grain drying. Plant Dis 1994;78:38-43. https://doi.org/10.1094/PD-78-0038
  13. Bluma R, Amaiden MR, Daghero J, Etcheverry M. Control of Aspergillus section Flavi growth and aflatoxin accumulation by plant essential oils. J Appl Microbiol 2008;105:203-14. https://doi.org/10.1111/j.1365-2672.2008.03741.x
  14. Kimura N, Hirano S. Inhibitory strains of Bacillus subtilis for growth and aflatoxin-production of aflatoxigenic fungi. Agric Biol Chem 1988;52:1173-9.
  15. Reddy KR, Reddy CS, Muralidharan K. Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Control 2009;20:173-8. https://doi.org/10.1016/j.foodcont.2008.03.009
  16. Zeringue HJ Jr, McCormick SP. Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon 1990;28:445-8. https://doi.org/10.1016/0041-0101(90)90083-J
  17. Wright MS, Greene-McDowelle DM, Zeringue HJ, Bhatnagar D, Cleveland TE. Effects of volatile aldehydes from Aspergillusresistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon 2000;38:1215-23. https://doi.org/10.1016/S0041-0101(99)00221-4
  18. Lee SY, Oh JY, Ryoo MI, Kim KD. Biological control of the rice storage fungi Aspergillus and Penicillium species by antagonistic bacteria originated from rice. Plant Pathol J 2007;23:328.
  19. Mannaa M, Oh JY, Kim KD. Microbe-mediated control of Aspergillus flavus in stored rice grains with a focus on aflatoxin inhibition and biodegradation. Ann Appl Biol 2017 Aug 14 [Epub]. https://doi.org/10.1111/aab.12381.
  20. Gu Q, Han N, Liu J, Zhu M. Expression of Helicobacter pylori urease subunit B gene in transgenic rice. Biotechnol Lett 2006;28:1661-6. https://doi.org/10.1007/s10529-006-9141-4
  21. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671-5. https://doi.org/10.1038/nmeth.2089
  22. Hocking AD, Pitt JI. Dichloran-glycerol medium for enumeration of xerophilic fungi from low-moisture foods. Appl Environ Microbiol 1980;39:488-92.
  23. Levene H. Robust tests for equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB, editors. Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford (CA): Stanford University Press; 1960. p. 278-92.
  24. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 2004;134:1017-26. https://doi.org/10.1104/pp.103.026583
  25. Sang MK, Kim JD, Kim BS, Kim KD. Root treatment with rhizobacteria antagonistic to Phytophthora blight affects anthracnose occurrence, ripening, and yield of pepper fruit in the plastic house and field. Phytopathology 2011;101:666-78. https://doi.org/10.1094/PHYTO-08-10-0224
  26. Sang MK, Kim KD. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 2012;113:383-98. https://doi.org/10.1111/j.1365-2672.2012.05330.x
  27. Gueldner RC, Wilson DM, Heidt AR. Volatile compounds inhibiting Aspergillus flavus. J Agric Food Chem 1985;33:411-3. https://doi.org/10.1021/jf00063a022
  28. Utama IM, Wills RB, Ben-Yehoshua S, Kuek C. In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J Agric Food Chem 2002;50:6371-7. https://doi.org/10.1021/jf020484d
  29. Holmes RA, Boston RS, Payne GA. Diverse inhibitors of aflatoxin biosynthesis. Appl Microbiol Biotechnol 2008;78:559-72. https://doi.org/10.1007/s00253-008-1362-0
  30. Mishra HN, Das C. A review on biological control and metabolism of aflatoxin. Crit Rev Food Sci Nutr 2003;43:245-64. https://doi.org/10.1080/10408690390826518
  31. Cleveland TE, Carter-Wientjes CH, De Lucca AJ, Boue SM. Effect of soybean volatile compounds on Aspergillus flavus growth and aflatoxin production. J Food Sci 2009;74:H83-7. https://doi.org/10.1111/j.1750-3841.2009.01078.x
  32. Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV, Linz JE. Willow volatiles influence growth, development, and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol 2011;92:359-70. https://doi.org/10.1007/s00253-011-3339-7
  33. Hua SS, Beck JJ, Sarreal SB, Gee W. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res 2014;30:71-8. https://doi.org/10.1007/s12550-014-0189-z