DOI QR코드

DOI QR Code

Spectroscopic Observation of AG Peg and Efficiency Changes of Bowen Fluorescence Mechanism

AG Peg의 분광 관측과 Bowen 형광 기작의 효율 변화

  • Hyung, Siek (Department of Earth Science Education, Chungbuk National University) ;
  • Lee, Seong-Jae (Department of Earth Science Education, Chungbuk National University) ;
  • Lee, Kang Hwan (Department of Earth Science Education, Chungbuk National University)
  • 형식 (충북대학교 지구과학교육과) ;
  • 이성재 (충북대학교 지구과학교육과) ;
  • 이강환 (충북대학교 지구과학교육과)
  • Received : 2017.08.02
  • Accepted : 2017.09.22
  • Published : 2017.10.31

Abstract

We investigated the H I, He II and O III emission lines of the symbiotic star AG Peg, using the spectroscopic data secured at different phases in three periods at the Lick Observatory. We measured FWHM and the intensity of six O III Bowen lines and studied the efficiency of fluorescence mechanism. The mean FWHM of O III normal and Bowen lines observed during three time periods did not make much difference, while Bowen line intensities are about 4.0 times higher than the normal lines. Comparing the predicted and the observed ratios, we found that the observed intensities are higher than predicted intensities, except for O III ${\lambda}$ 3759.87. The O III ${\lambda}$ 3791.26 and 3754.67 intensity ratios observed only in 2001 are in good agreement with the predictions by Saraph and Seaton (1980). We obtained the Bowen efficiency parameter (R)=0.47 for 2002, but we could not find R for the other two periods of time. Because of this, based on the 2002 efficiency result, we calculated the intensity ratio of O III normal and Bowen lines relative to He II ${\lambda}$ 4685.68 and derive the efficiency variation with time period. The result showed that the efficiency is the highest in 1998 and the lowest in 2001. We conclude that the efficiencies with phase are caused by the electron temperature changes in the ionized gas. The efficiencies of AG Peg are likely to increase along with electron temperature. Our analysis results may be useful in understanding the physical conditions of the ionized shell in symbiotic star and the intensity ratio and efficiency variation.

미국 Lick 천문대에서 위상이 다른 세 시기에 공생별 AG Peg을 분광 관측하고 방출선 H I, He II, O III를 조사하였다. 6개의 O III Bowen 선의 FWHM과 선세기를 측정하고 형광 기작 효율을 연구하였다. 세 시기의 O III 일반선과 Bowen 선의 평균 FWHM은 큰 차이가 없었으나 선세기 비는 약 4.0 배 정도로 O III Bowen 선이 높았다. O III Bowen 선의 이론적 세기 비와 관측 세기 비를 비교한 결과, O III ${\lambda}$ 3759.87만 제외하고 관측한 세기가 이론적 세기보다 크다는 사실을 알았다. O III ${\lambda}$ 3791.26과 3754.67의 선세기 비는 세 시기 중에서 2001년도만이 Saraph and Seaton(1980)의 모델과 잘 일치하였다. 다른 두 시기는 AG Peg의 효율(R)을 구할 수 없었으나 2002년은 R=0.47을 얻었다. 이 때문에, 2002년 효율 결과를 기초로 He II ${\lambda}$ 4685.68에 대한 O III 일반선과 Bowen 선의 세기 비를 구하여 시기에 따른 효율 변화를 알아보았다. 그 결과 AG Peg의 효율은 1998년이 가장 높았고 2001년이 가장 낮았다. 결론적으로, 위상에 따른 효율 변화는 이온화된 가스의 전자 온도 변화에 기인하는데, AG Peg의 효율은 전자 온도가 증가함에 따라 증가하고 있다. 우리 연구 결과는 선세기 비 및 효율의 경향성 파악과 공생별에서 이온화된 껍질의 물리적 조건을 이해하는데 사용될 수 있다.

Keywords

References

  1. Aller, L.H., 1984, Physics of thermal gaseous nebulae. Astrophysics and Space Science Library. 112, 360.
  2. Belczyski, K., Mikolajewska, J., Munari, U., Ivison, R.J., and Friedjung, M., 2000, A catalogue of symbiotic stars. Astronomy and Astrophysics Supplement, 146, 407-435. https://doi.org/10.1051/aas:2000280
  3. Berman, L., 1932, The Spectrum and Temperature of T Coronae (Nova 1866). Publications of the Astronomical Society of the Pacific, 44, 318-323. https://doi.org/10.1086/124255
  4. Bhatia, A.K. and Kastner, S.O., 1993, Collision Strengths and Transition Rates for O III. Atomic Data and Nuclear Data Tables, 54, 133-164. https://doi.org/10.1006/adnd.1993.1011
  5. Bhatia, A.K., Kastner, S.O., and Behring, W.E., 1982, The solar O III spectrum. I-Photoexcitation of EUV lines by He II Lyman-alpha. Astrophysical Journal, 257, 887-895. https://doi.org/10.1086/160038
  6. Bowen, I.S., 1934, The Excitation of the Permitted O III Nebular Lines. Publications of the Astronomical Society of the Pacific, 46, 146-148. https://doi.org/10.1086/124435
  7. Bowen, I.S., 1935, The Spectrum and Composition of the Gaseous Nebulae. Astrophysical Journal, 81, 1-16. https://doi.org/10.1086/143613
  8. Boyarchuk, A.A., 1969, SYMBIOTIC STARS. Non-Periodic Phenomena in Varoable Stars of IAU Colloquium, 65, 395.
  9. Burgess, A. and Seaton, M.J., 1960, The Abundance of Oxygen in the Planetary Nebula NGC 7027. Monthly Notices of the Royal Astronomical Society, 121, 76-96. https://doi.org/10.1093/mnras/121.1.76
  10. Contini, M., 1997, The Evolving Structure of AG Pegasi, Emerging from the Interpretation of the Emission Spectra at Different Phases. The Astrophysical Journal, 483, 887-898. https://doi.org/10.1086/304254
  11. Dalgarno, A. and Sternberg, A., 1982, The excitation of the triplet lines of $O^{2+}$ in nebulae. Monthly Notices of the Royal Astronomical Society, 200, 77-80. https://doi.org/10.1093/mnras/200.1.77P
  12. Deguchi, S., 1985, Bowen fluorescence mechanism in Xray binaries. Astrophysical Journal, 291, 492-504. https://doi.org/10.1086/163090
  13. Eriksson, M., Johansson, S., Wahlgren, G.M., Veenhuizen, H., Munari, U., and Siviero, A., 2005, Bowen excitation of N III lines in symbiotic stars. Astronomy and Astrophysics, 434, 397-404. https://doi.org/10.1051/0004-6361:20042174
  14. Fang, X. and Liu, X.W., Very deep spectroscopy of the bright Saturn nebula NGC 7009-I. Observations and plasma diagnostics. Monthly Notices of the Royal Astronomical Society, 415, 181-198.
  15. Froese-Fischer, C., 1994, Allowed transitions and intercombination lines in C III and C II. Physica Scripta, 49, 323. https://doi.org/10.1088/0031-8949/49/3/011
  16. Grandi, S.A., 1980, On I 8446 A emission in Seyfert 1 galaxies. Astrophysical Journal, 238, 10-16. https://doi.org/10.1086/157952
  17. Harrington, J.P., 1972, The Bowen Fluorescence Mechanism in Planetary Nebulae. Astrophysical Journal, 176, 127-137. https://doi.org/10.1086/151615
  18. Hyung, S., 2014, Spectroscopic Study of the Symbiotic Star CI Cyg. Journal of Korean Earth Science Society, 35, 313-323. https://doi.org/10.5467/JKESS.2014.35.5.313
  19. Hyung, S. and Aller, L.H., 1995, The optical spectrum of NGC 7009-II. A high-excitation bright ring region on the minor axis. Monthly Notices of the Royal Astronomical Society, 273, 973-991. https://doi.org/10.1093/mnras/273.4.973
  20. Iben, I.J. and Tutokov, A.V., 1996, On the evolution of symbiotic stars and other binaries with accreting degenerate dwarfs. Astrophysical Journal, 105, 145-180. https://doi.org/10.1086/192310
  21. Kallman, T. and McCray, R., 1980, Efficiency of the Bowen fluorescence mechanism in static nebulae. Astrophysical Journal, 242, 615-627. https://doi.org/10.1086/158498
  22. Kastner, S.O. and Bhatia, A.K., 1984, On Bowen enhancement of the N III spectrum under solar and nebular conditions. Astrophysical Journal, 287, 945-951. https://doi.org/10.1086/162751
  23. Kastner, S.O. and Bhatia, A.K., 1996, The Bowen fluorescence lines: overview and re-analysis of the observations. Monthly Notices of the Royal Astronomical Society, 279, 1137-1156. https://doi.org/10.1093/mnras/279.4.1137
  24. Kenny, H.T., 1995, Symbiotic Stars: the Geometry of the Radio Emitting Regions. PhD dissertation. University of Calgary, Alberta, Canada, 292.
  25. Kenyon, S.J., 1986, The symbiotic stars. PhD dissertation. Harvard University, Boston, Cambridge University Press, 295.
  26. Kenyon, S.J., Proga, D., and Keyes, C.D., 2001, The Continuing Slow Decline of AG Pegasi. The Astronomical Journal, 122, 349-359. https://doi.org/10.1086/321107
  27. Kim, H. and Hyung, S., 2008, Chemical abundances of the symbiotic nova AG Pegasi. Journal of the Korean Astronomical Society, 41, 23-37. https://doi.org/10.5303/JKAS.2008.41.2.023
  28. Lee, K.H., Lee, S.J., and Hyung, S., 2017, An Analysis of the H Emission Line Profiles of the Symbiotic Star AG Peg, Journal of Korean Earth Science Society, 38, 1-10. (in Korean) https://doi.org/10.5467/JKESS.2017.38.1.1
  29. Lee, S.J., Hyung, S., and Lee, K.H., 2012, An analysis of the symbiotic star Z And line profile. Journal of Korean Earth Science Society, 33, 608-617. (in Korean) https://doi.org/10.5467/JKESS.2012.33.7.608
  30. Likkel, L. and Aller, L.H., 1986, Observations of the Bowen fluoresecent mechanism in planetary nebulae. Astrophysical Journal, 301, 825-833. https://doi.org/10.1086/163946
  31. Liu, X.W. and Danziger, J., 1993, Observations of the Bowen fluorescence mechanism and charge transfer in planetary $nebulae^{\circ}(C)I$. Monthly Notices of the Royal Astronomical Society, 261, 465-495. https://doi.org/10.1093/mnras/261.3.465
  32. Liu, X., Danziger, J., and Murdin, P., 1993, Observations of the Bowen fluorescence mechanism and charge transfer in planetary nebulae. Monthly Notices of the Royal Astronomical Society, 262, 699-710. https://doi.org/10.1093/mnras/262.3.699
  33. McKenna, F.C., Keenan, F.P., Hambly, N.C., Prieto, C.A., Rolleston, W.R.J., Aller, L.H., and Feibelman, W.A., 1997, The Optical Spectral Line List of RR Telescopii. The Astrophysical Journal Supplement Series, 109, 225-239. https://doi.org/10.1086/312977
  34. Pereira, C.B., de Araujo, F.X., and Landaberry, S.J.C., 1999, Bowen fluorescence lines in symbiotic stars-I. Observational data, line ratios and efficiency. MNRAS, 309, 1074-1084 https://doi.org/10.1046/j.1365-8711.1999.02934.x
  35. Proga, D., Kenyon, Scott J., and Raymond, J.C., 1998, Illumination in Symbiotic Binary Stars: Non-LTE Photoionization Models. II. WIND Case. The Astrophysical Journal, 501, 339-356. https://doi.org/10.1086/305792
  36. Raymond, J.C., 1978, Bowen fluorescence in the solar transition region. Astrophysical Journal, 224, 259-264. https://doi.org/10.1086/156373
  37. Sabbadin, F., Turatto, M., Ragazzoni, R., Cappellaro, E., and Benetti, S., 2006, The structure of planetary nebulae: theory vs. practice. Astronomy and Astrophysics, 451, 937-949. https://doi.org/10.1051/0004-6361:20054554
  38. Saraph, H.E. and Seaton, M.J. 1980, Oscillator strength for O III and Bowen fluorescent mechanism. Monthly Notices of the Royal Astronomical Society, 193, 617-629. https://doi.org/10.1093/mnras/193.3.617
  39. Seaton, M.J., 1979, Interstellar extinction in the UV. Monthly Notices of the Royal Astronomical Society, 187P, 73-76.
  40. Selvelli, P., Danziger, J., and Bonifacio, P., 2007, The HeII Fowler lines and the OIII and NIII Bowen fluorescence lines in the symbiotic nova RR Telescopii. Astronomy and Astrophysics, 464, 715-734. https://doi.org/10.1051/0004-6361:20066175
  41. Storey, P.J. and Hummer, D.G., 1995, Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8, Monthly Notices of the Royal Astronomical Society, 272, 41-48. https://doi.org/10.1093/mnras/272.1.41
  42. Vogel, M. and Nussbaumer, H., 1994, The hot wind in the symbiotic nova AG Pegasi. Astronomy and Astrophysics, 284, 145-155.
  43. Wallerstein G., Schachter J., Garnavich P. M., and Oke J. B., 1991, Observation of Bowen fluorescence and other phenomena in five symbiotic stars. Publications of the Astronomical Society of the Pacific, 103, 185-193. https://doi.org/10.1086/132806
  44. Weymann, R.J. and Williams, R.E., 1969, The Bowen Fluorescence Mechanism in Planetary Nebulae and the Nuclei of Seyfert Galaxies. Astrophysical Journal, 157, 1201-1213. https://doi.org/10.1086/150147