DOI QR코드

DOI QR Code

Microbiota in T-cell homeostasis and inflammatory diseases

  • Lee, Naeun (Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea) ;
  • Kim, Wan-Uk (Center for Integrative Rheumatoid Transcriptomics and Dynamics, College of Medicine, The Catholic University of Korea)
  • Received : 2016.12.12
  • Accepted : 2017.01.02
  • Published : 2017.05.31

Abstract

The etiology of disease pathogenesis can be largely explained by genetic variations and several types of environmental factors. In genetically disease-susceptible individuals, subsequent environmental triggers may induce disease development. The human body is colonized by complex commensal microbes that have co-evolved with the host immune system. With the adaptation to modern lifestyles, its composition has changed depending on host genetics, changes in diet, overuse of antibiotics against infection and elimination of natural enemies through the strengthening of sanitation. In particular, commensal microbiota is necessary in the development, induction and function of T cells to maintain host immune homeostasis. Alterations in the compositional diversity and abundance levels of microbiota, known as dysbiosis, can trigger several types of autoimmune and inflammatory diseases through the imbalance of T-cell subpopulations, such as Th1, Th2, Th17 and Treg cells. Recently, emerging evidence has identified that dysbiosis is involved in the progression of rheumatoid arthritis, type 1 and 2 diabetic mellitus, and asthma, together with dysregulated T-cell subpopulations. In this review, we will focus on understanding the complicated microbiota-T-cell axis between homeostatic and pathogenic conditions and elucidate important insights for the development of novel targets for disease therapy.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012; 2012: 925135.
  2. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010; 28: 445-489. https://doi.org/10.1146/annurev-immunol-030409-101212
  3. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123-1132. https://doi.org/10.1038/ni1254
  4. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24: 677-688. https://doi.org/10.1016/j.immuni.2006.06.002
  5. Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol 2016; 16: 295-309. https://doi.org/10.1038/nri.2016.36
  6. King C, Tangye SG, Mackay CRT. Follicular helper (TFH) cells in normal and dysregulated immune responses. Annu Rev Immunol 2008; 26: 741-766. https://doi.org/10.1146/annurev.immunol.26.021607.090344
  7. Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells. Nat Rev Immunol 2015; 15: 295-307. https://doi.org/10.1038/nri3824
  8. NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L et al. The NIH Human Microbiome Project. Genome Res 2009; 19: 2317-2323. https://doi.org/10.1101/gr.096651.109
  9. Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207-214. https://doi.org/10.1038/nature11234
  10. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016; 22: 1079-1089. https://doi.org/10.1038/nm.4185
  11. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med 2016; 22: 713-722. https://doi.org/10.1038/nm.4142
  12. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012; 3: 4-14. https://doi.org/10.4161/gmic.19320
  13. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014; 157: 121-141. https://doi.org/10.1016/j.cell.2014.03.011
  14. Kim D, Yoo SA, Kim WU. Gut microbiota in autoimmunity: potential for clinical applications. Arch Pharm Res 2016; 39: 1565-1576. https://doi.org/10.1007/s12272-016-0796-7
  15. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337-341. https://doi.org/10.1126/science.1198469
  16. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009; 31: 677-689. https://doi.org/10.1016/j.immuni.2009.08.020
  17. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122: 107-118. https://doi.org/10.1016/j.cell.2005.05.007
  18. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 2007; 19: 59-69. https://doi.org/10.1016/j.smim.2006.10.002
  19. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485-498. https://doi.org/10.1016/j.cell.2009.09.033
  20. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA et al. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011; 332: 974-977. https://doi.org/10.1126/science.1206095
  21. Longman RS, Yang Y, Diehl GE, Kim SV, Littman DR, Microbiota. Host interactions in mucosal homeostasis and systemic autoimmunity. Cold Spring Harb Symp Quant Biol 2013; 78: 193-201. https://doi.org/10.1101/sqb.2013.78.020081
  22. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011; 365: 2205-2219. https://doi.org/10.1056/NEJMra1004965
  23. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007; 7: 429-442. https://doi.org/10.1038/nri2094
  24. van den Berg WB, Miossec P. IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5: 549-553. https://doi.org/10.1038/nrrheum.2009.179
  25. Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep 2009; 11: 365-370. https://doi.org/10.1007/s11926-009-0052-y
  26. Leipe J, Grunke M, Dechant C, Reindl C, Kerzendorf U, Schulze-Koops H et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum 2010; 62: 2876-2885. https://doi.org/10.1002/art.27622
  27. Wu X, He B, Liu J, Feng H, Ma Y, Li D et al. Molecular insight into gut microbiota and rheumatoid arthritis. Int J Mol Sci 2016; 17: 431. https://doi.org/10.3390/ijms17030431
  28. Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol 2008; 35: 1500-1505.
  29. Liu X, Zou Q, Zeng B, Fang Y, Wei H. Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol 2013; 67: 170-176. https://doi.org/10.1007/s00284-013-0338-1
  30. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2013; 2: e01202. https://doi.org/10.7554/eLife.01202
  31. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 2016; 8: 43. https://doi.org/10.1186/s13073-016-0299-7
  32. Duan J, Kasper DL. Regulation of T cells by gut commensal microbiota. Curr Opin Rheumatol 2011; 23: 372-376. https://doi.org/10.1097/BOR.0b013e3283476d3e
  33. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008; 455: 808-812. https://doi.org/10.1038/nature07240
  34. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008; 4: 337-349. https://doi.org/10.1016/j.chom.2008.09.009
  35. Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C, Christy MA et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+) Foxp3(+) T cells and Treg function. Gut Microbes 2015; 6: 234-242. https://doi.org/10.1080/19490976.2015.1056973
  36. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010; 32: 815-827. https://doi.org/10.1016/j.immuni.2010.06.001
  37. Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med 2008; 205: 1381-1393. https://doi.org/10.1084/jem.20080034
  38. Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity 2009; 30: 646-655. https://doi.org/10.1016/j.immuni.2009.05.001
  39. Abdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 2008; 118: 205-216. https://doi.org/10.1172/JCI32639
  40. Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol 2016; 68: 2646-2661. https://doi.org/10.1002/art.39783
  41. Liu X, Zeng B, Zhang J, Li W, Mou F, Wang H et al. Role of the gut microbiom in modulating arthritis progression in mice. Sci Rep 2016; 6: 30594. https://doi.org/10.1038/srep30594
  42. Scher JU, Abramson SB. Periodontal disease, Porphyromonas gingivalis, and rheumatoid arthritis: what triggers autoimmunity and clinical disease? Arthritis Res Ther 2013; 15: 122. https://doi.org/10.1186/ar4360
  43. Mikuls TR, Payne JB, Yu F, Thiele GM, Reynolds RJ, Cannon GW et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol 2014; 66: 1090-1100. https://doi.org/10.1002/art.38348
  44. Moutsopoulos NM, Kling HM, Angelov N, Jin W, Palmer RJ, Nares S et al. Porphyromonas gingivalis promotes Th17 inducing pathways in chronic periodontitis. J Autoimmun 2012; 39: 294-303. https://doi.org/10.1016/j.jaut.2012.03.003
  45. Rosenstein ED, Greenwald RA, Kushner LJ, Weissmann G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation 2004; 28: 311-318. https://doi.org/10.1007/s10753-004-6641-z
  46. Scher JU, Joshua V, Artacho A, Abdollahi-Roodsaz S, Ockinger J, Kullberg S et al. The lung microbiota in early rheumatoid arthritis and autoimmunity. Microbiome 2016; 4: 60. https://doi.org/10.1186/s40168-016-0206-x
  47. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009; 32: S62-S67. https://doi.org/10.2337/dc09-S062
  48. Todd JA. Etiology of type 1 diabetes. Immunity 2010; 32: 457-467. https://doi.org/10.1016/j.immuni.2010.04.001
  49. Alam C, Bittoun E, Bhagwat D, Valkonen S, Saari A, Jaakkola U et al. Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia 2011; 54: 1398-1406. https://doi.org/10.1007/s00125-011-2097-5
  50. Bevan MJ. Helping the CD8+ T-cell response. Nat Rev Immunol 2004; 4: 595-602. https://doi.org/10.1038/nri1413
  51. Savinov AY, Wong FS, Chervonsky AV. IFN-gamma affects homing of diabetogenic T cells. J Immunol 2001; 167: 6637-6643. https://doi.org/10.4049/jimmunol.167.11.6637
  52. Lehuen A, Diana J, Zaccone P, Cooke A. Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 2010; 10: 501-513. https://doi.org/10.1038/nri2787
  53. Sarvetnick N, Liggitt D, Pitts SL, Hansen SE, Stewart TA. Insulindependent diabetes mellitus induced in transgenic mice by ectopic expression of class II MHC and interferon-gamma. Cell 1988; 52: 773-782. https://doi.org/10.1016/0092-8674(88)90414-X
  54. Rabinovitch A. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation? Diabetes 1994; 43: 613-621.
  55. Zaccone P, Raine T, Sidobre S, Kronenberg M, Mastroeni P, Cooke A. Salmonella typhimurium infection halts development of type 1 diabetes in NOD mice. Eur J Immunol 2004; 34: 3246-3256. https://doi.org/10.1002/eji.200425285
  56. Raine T, Zaccone P, Mastroeni P, Cooke A. Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. J Immunol 2006; 177: 2224-2233. https://doi.org/10.4049/jimmunol.177.4.2224
  57. Mueller R, Krahl T, Sarvetnick N. Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 1996; 184: 1093-1099. https://doi.org/10.1084/jem.184.3.1093
  58. Cooke A, Tonks P, Jones FM, O'Shea H, Hutchings P, Fulford AJ et al. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol 1999; 21: 169-176. https://doi.org/10.1046/j.1365-3024.1999.00213.x
  59. Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 2007; 75: 397-407. https://doi.org/10.1128/IAI.00664-06
  60. Wang B, Gonzalez A, Hoglund P, Katz JD, Benoist C, Mathis D. Interleukin-4 deficiency does not exacerbate disease in NOD mice. Diabetes 1998; 47: 1207-1211. https://doi.org/10.2337/diab.47.8.1207
  61. Satoh J, Seino H, Abo T, Tanaka S, Shintani S, Ohta S et al. Recombinant human tumor necrosis factor alpha suppresses autoimmune diabetes in nonobese diabetic mice. J Clin Invest 1989; 84: 1345-1348. https://doi.org/10.1172/JCI114304
  62. Emamaullee JA, Davis J, Merani S, Toso C, Elliott JF, Thiesen A et al. Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 2009; 58: 1302-1311. https://doi.org/10.2337/db08-1113
  63. Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci USA 2011; 108: 11548-11553. https://doi.org/10.1073/pnas.1108924108
  64. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 2009; 39: 216-224. https://doi.org/10.1002/eji.200838475
  65. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232-236. https://doi.org/10.1038/nature12331
  66. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504: 451-455. https://doi.org/10.1038/nature12726
  67. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 2008; 28: 546-558. https://doi.org/10.1016/j.immuni.2008.02.017
  68. Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-${\beta}$1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 2007; 26: 579-591. https://doi.org/10.1016/j.immuni.2007.03.014
  69. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011; 34: 794-806. https://doi.org/10.1016/j.immuni.2011.03.021
  70. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15: 930-939. https://doi.org/10.1038/nm.2002
  71. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98-107. https://doi.org/10.1038/nri2925
  72. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 75-184.
  73. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009; 15: 914-920. https://doi.org/10.1038/nm.1964
  74. Garidou L, Pomie C, Klopp P, Waget A, Charpentier J, Aloulou M et al. The gut microbiota regulates intestinal CD4 T cells expressing ROR${\gamma}$t and controls metabolic disease. Cell Metab 2015; 22: 100-112. https://doi.org/10.1016/j.cmet.2015.06.001
  75. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470-1481. https://doi.org/10.2337/db07-1403
  76. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-1031. https://doi.org/10.1038/nature05414
  77. Celine P, Lucile G, Remy B. Intestinal RORgt-generated Th17 cells control type 2 diabetes: a first antidiabetic target identified from the host to microbiota crosstalk. Inflamm Cell Signal 2016; 3: e1074.
  78. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99-103. https://doi.org/10.1038/nature12198
  79. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60. https://doi.org/10.1038/nature11450
  80. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015; 16: 45-56.
  81. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992; 326: 298-304. https://doi.org/10.1056/NEJM199201303260504
  82. Cohn L, Elias JA, Chupp GL. Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol 2004; 22: 789-815. https://doi.org/10.1146/annurev.immunol.22.012703.104716
  83. Earl CS, An SQ, Ryan RP. The changing face of asthma and its relation with microbes. Trends Microbiol 2015; 23: 408-418. https://doi.org/10.1016/j.tim.2015.03.005
  84. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001; 108: 430-438. https://doi.org/10.1067/mai.2001.117929
  85. Wang YH, Wills-Karp M. The potential role of interleukin-17 in severe asthma. Curr Allergy Asthma Rep 2011; 11: 388-394. https://doi.org/10.1007/s11882-011-0210-y
  86. Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 2015; 17: 592-602. https://doi.org/10.1016/j.chom.2015.04.007
  87. Lighthart B. Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia 2000; 16: 7-16.
  88. Dickson RP, Erb-Downward JR, Huffnagle GB. Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol 2015; 309: L1047-L1055. https://doi.org/10.1152/ajplung.00279.2015
  89. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol 2016; 1: 16031. https://doi.org/10.1038/nmicrobiol.2016.31
  90. Wu W, Huang J, Duan B, Traficante DC, Hong H, Risech M et al. Th17-stimulating protein vaccines confer protection against Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2012; 186: 420-427. https://doi.org/10.1164/rccm.201202-0182OC
  91. Herbst T, Sichelstiel A, Schär C, Yadava K, Burki K, Cahenzli J et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med 2011; 184: 198-205. https://doi.org/10.1164/rccm.201010-1574OC
  92. Sutherland ER, Martin RJ. Asthma and atypical bacterial infection. Chest 2007; 132: 1962-1966. https://doi.org/10.1378/chest.06-2415
  93. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 2011; 127: 372-381, e1-3.
  94. Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 2013; 188: 1193-1201. https://doi.org/10.1164/rccm.201304-0775OC
  95. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthmaassociated differences in microbial composition of induced sputum. J Allergy Clin Immunol 2013; 131: 346-352. https://doi.org/10.1016/j.jaci.2012.11.013
  96. Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 2014; 20: 642-647. https://doi.org/10.1038/nm.3568
  97. Durack J, Boushey HA, Lynch SV. Airway microbiota and the implications of dysbiosis in asthma. Curr Allergy Asthma Rep 2016; 16: 52. https://doi.org/10.1007/s11882-016-0631-8
  98. Green BJ, Wiriyachaiporn S, Grainge C, Rogers GB, Kehagia V, Lau L et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS ONE 2014; 9: e100645. https://doi.org/10.1371/journal.pone.0100645
  99. Mejia-Leon ME, Barca AM. Diet, microbiota and immune system in type 1 diabetes development and evolution. Nutrients 2015; 7: 9171-9984. https://doi.org/10.3390/nu7115461
  100. Simpson JL, Daly J, Baines KJ, Yang IA, Upham JW, Reynolds PN et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J 2016; 47: 792-800. https://doi.org/10.1183/13993003.00405-2015

Cited by

  1. Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/4835189
  2. Attenuation of Rheumatoid Inflammation by Sodium Butyrate Through Reciprocal Targeting of HDAC2 in Osteoclasts and HDAC8 in T Cells vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.01525
  3. A Potential Benefit of “Balanced Diet” for Rheumatoid Arthritis vol.5, pp.None, 2017, https://doi.org/10.3389/fmed.2018.00141
  4. A low abundance of Bifidobacterium but not Lactobacillius in the feces of Chinese children with wheezing diseases vol.97, pp.40, 2017, https://doi.org/10.1097/md.0000000000012745
  5. Stimulation of Tendon Healing With Delayed Dexamethasone Treatment Is Modified by the Microbiome vol.46, pp.13, 2017, https://doi.org/10.1177/0363546518799442
  6. A comparative study of the gut microbiota in immune-mediated inflammatory diseases—does a common dysbiosis exist? vol.6, pp.1, 2017, https://doi.org/10.1186/s40168-018-0603-4
  7. Brain–gut axis after stroke vol.4, pp.4, 2017, https://doi.org/10.4103/bc.bc_32_18
  8. REV-ERBα Regulates TH17 Cell Development and Autoimmunity vol.25, pp.13, 2017, https://doi.org/10.1016/j.celrep.2018.11.101
  9. Increased IL-17 and/or IFN-γ producing T-cell subsets in gut mucosa of long-term-treated HIV-1-infected women vol.33, pp.4, 2017, https://doi.org/10.1097/qad.0000000000002122
  10. Long-Term Potable Effects of Alkalescent Mineral Water on Intestinal Microbiota Shift and Physical Conditioning vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/2710587
  11. Contribution of Non-immune Cells to Activation and Modulation of the Intestinal Inflammation vol.10, pp.None, 2017, https://doi.org/10.3389/fimmu.2019.00647
  12. Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflammatory bowel disease vol.17, pp.2, 2017, https://doi.org/10.5217/ir.2018.00170
  13. Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity vol.37, pp.None, 2017, https://doi.org/10.1146/annurev-immunol-042718-041841
  14. T and B Cells in Periodontal Disease: New Functions in A Complex Scenario vol.20, pp.16, 2017, https://doi.org/10.3390/ijms20163949
  15. Gut microbiota in ALS: possible role in pathogenesis? vol.19, pp.9, 2019, https://doi.org/10.1080/14737175.2019.1623026
  16. Loss of PTPN22 abrogates the beneficial effect of cohousing-mediated fecal microbiota transfer in murine colitis vol.12, pp.6, 2017, https://doi.org/10.1038/s41385-019-0201-1
  17. The gut microbiota modulator berberine ameliorates collagen‐induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply vol.33, pp.11, 2017, https://doi.org/10.1096/fj.201900425rr
  18. Individuals at risk of seropositive rheumatoid arthritis: the evolving story vol.286, pp.6, 2019, https://doi.org/10.1111/joim.12980
  19. The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story vol.7, pp.12, 2019, https://doi.org/10.3390/microorganisms7120583
  20. Narirutin suppresses M1-related chemokine interferon-gamma-inducible protein-10 production in monocyte-derived M1 cells via epigenetic regulation vol.16, pp.71, 2017, https://doi.org/10.4103/pm.pm_105_20
  21. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases vol.11, pp.None, 2017, https://doi.org/10.3389/fmicb.2020.00301
  22. Short-Term Amoxicillin-Induced Perturbation of the Gut Microbiota Promotes Acute Intestinal Immune Regulation in Brown Norway Rats vol.11, pp.None, 2017, https://doi.org/10.3389/fmicb.2020.00496
  23. T cell subsets and functions in atherosclerosis vol.17, pp.7, 2017, https://doi.org/10.1038/s41569-020-0352-5
  24. The Effect of Intestinal Microbiome on the Effectiveness of Antitumor Immunotherapy vol.14, pp.3, 2017, https://doi.org/10.1134/s1990750820030105
  25. Effects of Vigiis 101-LAB on a healthy population's gut microflora, peristalsis, immunity, and anti-oxidative capacity: A randomized, double-blind, placebo-controlled clinical study vol.6, pp.9, 2017, https://doi.org/10.1016/j.heliyon.2020.e04979
  26. Single‐Cell Immune Profiling in Coronary Artery Disease: The Role of State‐of‐the‐Art Immunophenotyping With Mass Cytometry in the Diagnosis of Atherosclerosis vol.9, pp.24, 2017, https://doi.org/10.1161/jaha.120.017759
  27. Bacterial infections in lupus: Roles in promoting immune activation and in pathogenesis of the disease vol.4, pp.None, 2017, https://doi.org/10.1016/j.jtauto.2020.100078
  28. The Gut Microbiota and Its Relevance to Peripheral Lymphocyte Subpopulations and Cytokines in Patients with Rheumatoid Arthritis vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6665563
  29. Role of Intestinal Microbiota on Gut Homeostasis and Rheumatoid Arthritis vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/8167283
  30. Integrated Fecal Microbiome and Serum Metabolomics Analysis Reveals Abnormal Changes in Rats with Immunoglobulin A Nephropathy and the Intervention Effect of Zhen Wu Tang vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.606689
  31. Virus Infection Is an Instigator of Intestinal Dysbiosis Leading to Type 1 Diabetes vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.751337
  32. Gut Microbiota as Regulators of Th17/Treg Balance in Patients With Myasthenia Gravis vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.803101
  33. Alterations of Gut Microbiota in Patients With Graves’ Disease vol.11, pp.None, 2017, https://doi.org/10.3389/fcimb.2021.663131
  34. Coccidia-Microbiota Interactions and Their Effects on the Host vol.11, pp.None, 2017, https://doi.org/10.3389/fcimb.2021.751481
  35. The Role of Microbiome and Virome in Idiopathic Pulmonary Fibrosis vol.9, pp.4, 2017, https://doi.org/10.3390/biomedicines9040442
  36. The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases vol.9, pp.4, 2017, https://doi.org/10.3390/microorganisms9040697
  37. Targeting the gut-liver-immune axis to treat cirrhosis vol.70, pp.5, 2017, https://doi.org/10.1136/gutjnl-2020-320786
  38. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods vol.13, pp.5, 2021, https://doi.org/10.3390/nu13051516
  39. Gut Microbiota, in the Halfway between Nutrition and Lung Function vol.13, pp.5, 2021, https://doi.org/10.3390/nu13051716
  40. Treatment and mechanism of fecal microbiota transplantation in mice with experimentally induced ulcerative colitis vol.246, pp.13, 2017, https://doi.org/10.1177/15353702211006044
  41. Gut microbiome-host interactions in driving environmental pollutant trichloroethene-mediated autoimmunity vol.424, pp.None, 2017, https://doi.org/10.1016/j.taap.2021.115597
  42. Mixture of probiotics reduces inflammatory biomarkers and improves the oxidative/nitrosative profile in people with rheumatoid arthritis vol.89, pp.None, 2017, https://doi.org/10.1016/j.nut.2021.111282
  43. The Influence of Diet and Probiotics on the Response of Solid Tumours to Immunotherapy: Present and Future Perspectives vol.11, pp.18, 2017, https://doi.org/10.3390/app11188445
  44. Overview of the microbiota in the gut-liver axis in viral B and C hepatitis vol.27, pp.43, 2017, https://doi.org/10.3748/wjg.v27.i43.7446
  45. Bacteroides uniformis CECT 7771 alleviates inflammation within the gut-adipose tissue axis involving TLR5 signaling in obese mice vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-90888-y
  46. Efficacy of probiotics for managing infantile colic due to their anti-inflammatory properties: a meta-analysis and systematic review vol.64, pp.12, 2017, https://doi.org/10.3345/cep.2020.01676
  47. Risk Factors for Infections, Antibiotic Therapy, and Its Impact on Cancer Therapy Outcomes for Patients with Solid Tumors vol.11, pp.12, 2021, https://doi.org/10.3390/life11121387