DOI QR코드

DOI QR Code

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach.

메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구

  • Noh, Jaehyun (Department of Chemical Engineering, Kong Ju National University) ;
  • Park, Hoey Kyung (Department of Chemical Engineering, Kong Ju National University) ;
  • Kim, Dongsun (Department of Chemical Engineering, Kong Ju National University) ;
  • Cho, Jungho (Department of Chemical Engineering, Kong Ju National University)
  • Received : 2017.07.28
  • Accepted : 2017.10.13
  • Published : 2017.10.31

Abstract

The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.

본 연구에서는 $CO_2$ 제거 용매로써 메탄올 수용액을 사용하는 $Rectisol^{(R)}$공정을 모델링하기 위한 열역학 모델식으로는 PC-SAFT(Perturebed-Chain Statistical Associating Fluid Theory) 상태방정식과 액체활동도계수 모델식을 기본으로 조합된 Two-model approach식{NRTL(Non Random Two Liquid) + Henry + Peng-Robinson}을 비교하였다. 또한 PC-SAFT 상태방정식의 이성분계 상호작용 매개변수와 Two-model approach식의 Henry 상수를 새롭게 결정하기 위해서 273.25K과 262.35K에서 $CO_2$와 메탄올 간의 흡수평형실험을 수행하고 회귀분석을 하였다. 그리고 새롭게 결정한 매개변수의 정확성은 실험 데이터의 추산결과를 통해 검증하였다. 이러한 모델식과 검증한 매개변수를 사용하여 $CO_2$ 제거공정을 모델링 하였다. 그 결과 Two-model approach식을 사용한 경우가 PC-SAFT EOS을 사용한 경우에 비해 $CO_2$ 99.00% 제거하기 위해 요구되는 메탄올 용매 유량이 약 43.72% 더 높게 추산되었으며, 증류탑에서의 냉각수 소모량은 39.22%정도, 스팀소모량은 43.09%정도 더 소요됨을 알 수 있었다. 결론적으로 고압에서 운전되는 $Rectisol^{(R)}$ 공정을 Henry관계식의 도움을 받는 액체활동도계수 모델식을 사용하여 모델링을 하는 경우 PC-SAFT 상태방정식을 사용한 경우에 비해서 크게 설계된 다는 것을 알 수 있었다. 이러한 이유는 액상에 대한 용해도가 낮은 가스성분이 일정한 온도에서 액상에 녹아드는 양은 기상의 분압에 비례하여 증가하는 것으로 계산되는 Henry 관계식의 특성 때문에 메탄올에 대해 용해도가 큰 $CO_2$의 경우 메탄올과 $CO_2$간의 흡수특성을 잘 예측하지 못하는 것을 알 수 있었다.

Keywords

References

  1. E. Kruszczak and H. Kierzkowska-Pawlak, "CO2 Capture by Absorption in Activated Aqueous Solutions of N, N-Diethylethanoloamine", Ecological Chemistry and Engineering S., vol. 24, No 2, pp. 239-248, 2017. DOI: https://doi.org/10.1515/eces-2017-0016
  2. S. Mirzaei, A. Shamiri and M.K. Aroua, "Simulation of Aqueous Blend of Monoethanolamine and Glycerol for Carbon Dioxide Capture from Flue Gas", Energy Fuels, vol. 30, pp. 9540-9553, 2016. DOI: https://doi.org/10.1021/acs.energyfuels.6b01230
  3. M.E. Hamzehie and H. Najibi, "Carbon Dioxide Absorption in Aqueous Solution of Potassium Glycinate + 2-amino-2-methyl-1-propanol as New Absorbents", RSC Advances, vol. 6, pp. 62612-62623, 2016. DOI: https://doi.org/10.1039/C6RA09600J
  4. H. Pashaei, M.N. Zarandi and A. Ghaemi, "Experimental Study and Modeling of CO2 Absorption into Diethanolamine Solutions using Stirrer Bubble Column", Chemical Engineering Research and Design, vol. 121, pp. 32-43, 2017. DOI: https://doi.org/10.1016/j.cherd.2017.03.001
  5. A. L. Kohl, and R. B. Nielsen, Gas Purification, 5th ed., Houston, Texas, Gulf Publishing Company, 1997.
  6. UOP - Honeywell Company, 2009, Meeting Staged CO2 Capture Requirements with SelexolTM Process. Retrieved from https://www.uop.com/?document=meeting-staged-co2-capture-requirements-with-uop-selexol&download=1
  7. A. M. A. Karim, Z. A. Abdel-Rahman, A. J. Hadi, "Solubility prediction of CO2 in several physical liquid solvents using CHEMCAD and HYSYS simulators," Diyala Journal of Engineering Sciences, pp. 356-373, 2010.
  8. A. A. Olajire, "CO2 capture and separation technologies for end-of-pipe applications ? A review," Energy, vol. 35, no. 6, pp. 2610-2628, 2010. DOI: https://doi.org/10.1016/j.energy.2010.02.030
  9. K. Ibsen, "Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment ? Task 2.3: Sulfur Primer," National Renewable Engineering Laboratory, Nexant Inc., San Francisco, CA, NREL/SR-510-39946, May 2006.
  10. D. H. Cho, J. H. Rho, D. S. Kim, and J. H. Cho, "A Study for Carbon dioxide Removal Process Using Methanol Solvent in DME Manufacture Process," Journal of the Korea Academia-Industrial Cooperation Society, vol. 14, no. 3, pp. 1502-1511, 2013. DOI: https://doi.org/10.5762/KAIS.2013.14.3.1502
  11. I. Y. Mohammed, M. Samah, A. Mohamed, G. Sabina, "Comparison of SelexolTM and Rectisol(R) Technologies in an Integrated Gasification Combined Cycle(IGCC) Plant for Clean Energy Production,"International Journal of Engineering Research, vol. 12, no. 3, pp. 742-744, 2014. DOI: https://doi.org/10.17950/ijer/v3s12/1207
  12. J. Gross and G. Sadowski, "Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules," Industrial and Engineering Chemistry Research, vol. 40, no. 4, pp. 1244-1260, 2001. DOI: https://doi.org/10.1021/ie0003887
  13. S. H. Huang and M. Radosz, "Equation of State for Small, Large, Polydisperse and Associating Molecules," Industrial and Engineering Chemistry Research, vol. 29, no. 11, pp. 2284-2294, 1990. DOI: https://doi.org/10.1021/ie00107a014
  14. S. H. Huang and M. Radosz, "Equation of State for Small, Large, Polydisperse and Associating Molecules: Extension to Fluid Mixtures," Industrial and Engineering Chemistry Research, vol. 30, no. 8, pp. 1994-2005, 1991. DOI: https://doi.org/10.1021/ie00056a050
  15. X. Luo and M. Wang, "Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment", Engineering, vol. 3, pp. 232-243, 2017. DOI: https://doi.org/10.1016/J.ENG.2017.02.001
  16. C.H.J.T. Dietz, D.J.G.P. van Osch, M.C. Kroon, G. Sadowski, M. van Sint Annaland, F. Gallucci, L.F. Zubeir and C. Held, "PC-SAFT Modeling of CO2 Solubilities in Hydrophobic Deep Eutectic Solvents", Fluid Phase Equilibria, vol. 448, pp. 94-98, 2017. DOI: https://doi.org/10.1016/j.fluid.2017.03.028
  17. N. I. Diamantonis, G.C. Boulougouris, E. Mansoor, D. M. Tsangaris and I.G. Economou, "Evaluation of Cubic, SAFT, and PC-SAFT Equations of State for the Vapor-Liquid Equilibrium Modeling of CO2 Mixtures with Other Gases", Industrial & Engineering Chemistry Research, vol. 52, pp. 3933-3942, 2013. DOI: https://doi.org/10.1021/ie303248q
  18. J. T. Jung, J. H. Rho, and J. H. Cho, "A Study for Carbon Dioxide Removal Process Using N-Methyl-2-Pyrrolidone Solvent in DME Production Process," Clean Technology, vol. 18, no. 4, pp. 347-354, 2012. DOI: https://doi.org/10.7464/ksct.2012.18.4.347
  19. G. G. Lim, S. K. Park, J. H. Rho, and Y. S. Baek, "A Study on Separation Process for Over 95 wt% DME Recovery from DME Mixture Gases," Clean Technology, vol. 15, no. 4, pp. 287-294, 2009.
  20. J. H. Cho and J. W. Lee, "A Study on the Thermodynamic Analysis and the Computer Simulation for the CO2 and H2S Capture Process Using Methanol as a Solvent,"Clean Technology, vol. 14, no. 4, pp. 287-292, 2008.
  21. J. H. Hong, R. Kobayashi, "Vapor-liquid equilibrium studies for carbon dioxide-methanol systems," Fluid Phase Equilibria, vol. 41, no. 3, pp. 269-276, 1988. DOI: https://doi.org/10.1016/0378-3812(88)80011-6
  22. W. Weber, S. Zeck, and H. Knapp, "Gas Solubilities in Liquid Solvents at High Pressures: Apparatus and Results for Binary and Ternary Systems of N2,CO2 and CH3OH," Fluid Phase Equilibria, vol. 18, no. 3, pp. 253-278, 1984. DOI: https://doi.org/10.1016/0378-3812(84)85011-6
  23. M. S. Wertheim, "Fluids with Highly Directional Attractive Forces. I. Statistical Thermodynamics", J. Stat. Phys., vol. 35, pp. 19-34, 1984. DOI: https://doi.org/10.1007/BF01017362
  24. M. S. Wertheim, "Fluids with Highly Directional Attractive Forces. II. Thermodynamics Perturbation Theory and Integral Equations", J. Stat. Phys., vol. 35, pp. 35-47, 1984. DOI: https://doi.org/10.1007/BF01017363
  25. W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radoz, "New Reference Equation of State for Associating Liquids," Industrial and Engineering Chemistry Research, vol. 29, no. 8, pp. 1709-1721, 1990. DOI: https://doi.org/10.1021/ie00104a021
  26. N. F. Carnahan and K. E. Starling, "Equation of State for Nonattracting Rigid Spheres," Journal of Chemical Physics, vol. 51, pp. 635-636, 1969. DOI: https://doi.org/10.1063/1.1672048
  27. Baker, J. A., Henderson, D., "Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids", J. Chem. Phys. vol. 47, pp. 4714-4720, 1967. DOI: https://doi.org/10.1063/1.1701689
  28. J. K. Park, K. H. Choi, L. S. Gyu, Y. M. Yang and J. H. Cho, "Estimation of Density of Methane and Ethane and Vapor-Liquid Equilibrium Predictions for Methane-Ethane Binary System Using PR and PC-SAFT Equation of State", Journal of the Korean Institute of Gas, vol. 14, no. 2, pp. 22-26, 2010.
  29. A. G. Perez, C. Coquelet, P. Paricaud and A. Chapoy, "Comparative Study of Vapour-Liquid Equilibrium and Density Modelling of Mixtures Related to Carbon Capture and Storage with the SRK, PR, PC-SAFT and SAFT-VR Mie Equations of State for Industrial Uses", Fluid Phase Equilibria, vol. 440, pp. 19-35, 2017. DOI: https://doi.org/10.1016/j.fluid.2017.02.018
  30. H.I. Britt and R.H. Luecke, "The estimation of parameters in nonlinear implicit models," Technometrics, vol. 15, no. 2, pp. 233-247, 1973. DOI: https://doi.org/10.1080/00401706.1973.10489037
  31. D. C. Montgomery, "Estimation by Maximum Likelihood," Introduction to Linear Regression Analysis, San Francisco: John Wiley & Sons Inc., 2012, p. 51.
  32. S. Huamin, "Solubility of Carbon Monoxide in Methanol and Carbon Dioxide Under High Pressure," Chemical Engineering (China), vol. 19, pp. 61-70, 1991.
  33. M. Yorizane, S. Sadamoto, H. Masuoka, and Y. Eto, "Gas Solubilities in Methanol at High Pressure," The Journal of the Society of Chemical Industry, Japan, vol. 72, no. 10. pp. 2174-2177, 1969. DOI: https://doi.org/10.1246/nikkashi1898.72.10_2174
  34. H. Donnelly and D. Katz, "Phase Equilibria in the Carbon Dioxide?Methane System," Industrial and Engineering Chemistry, vol. 46, no. 3, pp. 511-517, 1954. DOI: https://doi.org/10.1021/ie50531a036
  35. J. H. Hong, P. V. Malone, M. D. Jett, and R. Kobayashi, "The measurement and interpretation of the fluid-phase equilibria of a normal fluid in a hydrogen bonding solvent: the methane-methanol system," Fluid Phase Equilibrium, vol. 38, no. 1-2, pp. 83-96, 1987. DOI: https://doi.org/10.1016/0378-3812(87)90005-7
  36. Y. D. Zel'venskii, "The solubility of carbon dioxide in water under pressure". Zh. Khim. Promsti., vol. 14, pp. 1250-1257, 1937.
  37. Z. S. Kooner, R. C. Phutela, and D. V. Fenby, "Determination of the equilibrium constants of water-methanol deuterium exchange reactions from vapor pressure measurements," Aust. J. Chem., vol. 33, pp. 9-13, 1980. DOI: https://doi.org/10.1071/CH9800009
  38. M. L. McGlashan and A. G. Williamson, "Isothermal liquid-vapor equilibriums for system methanol-water," Journal of Chemical and Engineering Data, vol. 21, no. 2, pp. 196-199, 1976. DOI: https://doi.org/10.1021/je60069a019
  39. O. L. Culberson, A. B. Horn, and J. J. McKetta, "Phase Equilibria in Hydrocarbon-Water Systems: The Solubility of Ethane in Water at Pressures up to 1200 Pounds per Square Inch," Journal of Petroleum Technology, vol. 189, pp. 1-6, 1950. DOI: https://doi.org/10.2118/950001-G
  40. O. L. Culberson and J. J. McKetta Jr., "Phase Equilibria in Hydrocarbon-Water Systems III - The Solubility of Methane in Water at Pressures to 10,000 PSIA," Journal of Petroleum Technology, vol. 192, pp. 223-226, 1951. DOI: https://doi.org/10.2118/951223-G
  41. N. L. Yarym-Agaev, R. P. Sinyavskaya, I. I. Koliushko, and L. Ya. Levinton, "Phase equilibria in the water-methane and methanol-methane binary systems under high pressures," Zh. Prikl. Khim., vol. 58, pp. 165-168, 1985.
  42. P. C. Gillespie and G. M. Wilson, "Vapor-liquid Equilibrium Data on Water-substitute Gas Components: N2-H2O, H2-H2O, CO-H2O, H2-CO-H2O, and H2S-H2O," Gas Processors Association, Tulsa, OK, Rep. RR-41, 1980.
  43. R. Wiebe and V. L. Gaddy, "The Solubility of Hydrogen in Water at 0, 50, 75 and $100^{\circ}$ from 25 to 1000 Atmospheres," Journal of American Chemical Society, vol. 56, no. 1, pp. 76-79, 1934. DOI: https://doi.org/10.1021/ja01316a022
  44. H. Renon and J. M. Prauznits, "Local Composition in Thermodynamic Excess Functions for Liquid Mixtures," AIChE Journal, vol. 14, no. 1, pp. 135-144, 1968. DOI: https://doi.org/10.1002/aic.690140124
  45. D. Y. Peng and D. B. Robinson, "A New Two-constant Equation of State for Fluids and Fluid Mixtures," Ind. Eng. Chem. Fundam., vol. 15, no. 1, pp. 58-64, 1976. DOI: https://doi.org/10.1021/i160057a011
  46. C. H. Twu, D. Bluck, J.R. Cunningham, and J.E. Coon, "A Cubic Equation of State with a New Alpha Function and New Mixing Rule," Fluid Phase Equilibrium, vol. 69, pp. 33-50, 1991. DOI: https://doi.org/10.1016/0378-3812(91)90024-2
  47. L. J. Christiansen, A. Fredenslund, and N. Gardner, "Gas-Liquid Equilibriums Carbon Dioxide-Carbon Monoxide and Carbon Dioxide-Methane Carbon Monoxide Systems," in Advances in Cryogenic Engineering, K. D. Timmerhaus, Ed., New York: Plenum Press, vol. 19, pp. 309-319, 1974. DOI: https://doi.org/10.1007/978-1-4613-9847-9_38