DOI QR코드

DOI QR Code

Wetland Assessment and Improvement of Evaluation Index Using Rapid Assessment Method (RAM)

신속평가방법(Rapid Assessment Method)을 이용한 습지평가 및 평가항목의 개선

  • 최종윤 (국립생태원 생태평가연구실) ;
  • 김성기 (국립생태원 생태평가연구실) ;
  • 윤종학 (국립생태원 생태평가연구실) ;
  • 주기재 (부산대학교 생명과학과)
  • Received : 2017.06.05
  • Accepted : 2017.08.11
  • Published : 2017.09.30

Abstract

In order to consider application and evaluation of value and class of domestic wetland, we investigated 146 wetlands located Gyeongsangnam-do using Rapid Assessment Method (RAM). We utilized Self-Organizing-Map (SOM) to analysis relationship between evaluation index and land coverage ratio surrounding wetland. Among total 8 evaluation index, 'Fish and herptile habitat' and 'Aesthetic value' were higher, most of the wetlands evaluated as 2, 3 grade. Result of SOM analysis, 'vegetation diversity and wild animals habitat' is negatively related to the 'Fish and herptile habitat', because fishs were not prefer habitat excessively occupied by plant. However, high vegetation diversity can be support high score of 'Aesthetic' in wetland. Also, 'Erosion control' and 'Flood storage and control' were closely related, wetlands with high score of 'Erosion control' have high score of 'Flood storage and control'. When applied RAM in domestic wetland, six out of 6 evaluation index induced biased results, the index of RAM need a little change as some new or modify evaluation index. Therefore, we consider to need adjustable, subdivide, and actualization of some evaluation index for application of RAM in domestic wetlands. Consequently, wetland assessment and class using RAM can be utilized as important indicate for conservation and management of wetland, and contributed greatly to maintain biodiversity include to endangered species by preserving remaining wetland.

국내 습지의 가치와 등급을 평가하고 적용방안을 고찰하기 위해, 경상남도에 위치한 146개 습지를 대상으로 신속평가방법 (Rapid Assessment Method)을 이용한 습지평가를 수행하였다. 각 습지에서 평가된 8개 대항목과 주변 피복 비율 간 관계를 분석하기 위해 Self-Organizing Map(SOM) 알고리즘을 이용하여 패턴분석을 실시하였다. 총 8개의 항목 중, '식생다양성 야생동물 서식처'와 '미적 레크레이션' 항목 점수가 가장 높았으며, 대부분 2~3등급의 가치를 가지는 것으로 평가되었다. SOM 분석 결과, 식생다양성 야생동물 서식처 항목이 높은 습지에는 대부분 어류 양서 파충류 서식처 항목이 낮은 성향을 보였는데, 이는 어류 등은 식생다양성이 높은 지역을 선호하지 않기 때문인 것으로 사료된다. 습지 내 수생식물의 높은 풍부도는 미적인 부분을 충족시키기 때문에 미적 레크레이션 점수가 높은 습지는 대부분 식생다양성 야생동물 서식처가 높았다. 또한, 침식조절 기능의 경우 홍수 저장 조절 기능과 밀접하게 관련되며, 침식조절 기능이 높은 습지는 홍수 저장 조절 기능 또한 높은 경향을 가진다. 국내 습지에 신속평가방법을 적용한 결과, 일부 항목이 국내 습지 특성이나 범위에 맞지 않아 개선이 요구되며, 습지 보전 측면에서 '접근성'이나 '시각적 개방성' 등 항목들은 점수 체제의 전환이 필요한 것으로 나타났다. 따라서 신속평가방법을 국내 습지에 적용하기 위해서는 항목 내 평가기준의 조정 혹은 세분화, 현실화가 필요한 것으로 판단된다. 향후 신속평가방법을 이용한 등급화는 습지의 보전이나 관리 방안 마련에 중요한 지표로서 활용될 수 있으며, 잔존하는 습지를 보존하여 멸종위기종 등 생물상 유지에 크게 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. Bendor, T. 2009. A dynamic analysis of the wetland mitigation process and its effects on no net loss policy. Landscape and Urban Planning 89: 17-27. https://doi.org/10.1016/j.landurbplan.2008.09.003
  2. Choi, J.Y., K.S. Jeong, S.K. Kim, G.H. La, K.H. Chang and G.J. Joo. 2014a. Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecological Informatics 24: 177-185. https://doi.org/10.1016/j.ecoinf.2014.09.002
  3. Choi, J.Y., K.S. Jeong, G.H. La, S.K. Kim and G.J. Joo. 2014b. Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology 73: 197-202.
  4. Choi, J.Y., S.K. Kim, K.S. Jeong and G.J. Joo. 2015. Distribution pattern of epiphytic microcrustaceans in relation to different macrophyte microhabitats in a shallow wetland (Upo wetlands, South Korea). Oceanological and Hydrobiological Studies 44(2): 151-163.
  5. Dekeyser, E.S., D.R. Kirby and M.J. Eii. 2003. An index of plant community integrity: development of the methodology for assessing prairie wetland plant communities. Ecological Indicators 3: 119-133. https://doi.org/10.1016/S1470-160X(03)00015-3
  6. Findlay, C.S. and J. Bourdages. 2000. Response time of wetland biodiversity to road construction on adjacent lands. Conservation Biology 14: 86-94. https://doi.org/10.1046/j.1523-1739.2000.99086.x
  7. Grace, J.B. 1999. The factors controlling species density in herbaceous plant communities: an assessment. Perspectives in Plant Ecology, Evolution and Systematics 2: 1-28. https://doi.org/10.1078/1433-8319-00063
  8. Hauer, F.R. and R.D. Smith. 1998. The hydrogeomorphic approach to functional assessment of riparian wetlands: evaluating impacts and mitigation on river floodplains in the U.S.A. Freshwater Biology 40: 517-530. https://doi.org/10.1046/j.1365-2427.1998.00382.x
  9. Jeong, K.S., G.J. Joo, D.K. Kim, M. Lineman, S.H. Kim, I. Jang, S.J. Hwang, J.H. Kim, J.K. Lee and M.S. Byeon. 2008. Development of habitat-riparian quality indexing system as a tool of stream health assessment: case study in the Nakdong River basin. Korea Journal of Limnology 41: 499-511.
  10. Jeong, K.S, D.K. Kim, D.K. Hong, J.Y. Choi, J.D. Yoon and G.J. Joo. 2009. Relationships among a habitat-Riparian indexing system (HIS), water quality and coverage: a case study in the main channel of the tangsan stream (South Korea). Korea Journal of Limnology 42: 502-509.
  11. Kang, E.O., Y.E. Choi and C.H. Kim. 2012. Study on function and vegetational assessment values of man-made wetland in Gunsan city. Journal of the Environmental Sciences 21: 997-1007. https://doi.org/10.5322/JES.2012.21.8.997
  12. Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  13. King, A.J., P. Humphries and P.S. Lake. 2003. Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60(7): 773-786. https://doi.org/10.1139/f03-057
  14. Kim, Y.J. and S.D. Lee. 2009. Studies on problems and improvement of introducing no wetland loss. Environmental Impact Assessment 18: 235-243.
  15. Kohonen, T., J. Hynninen, J. Kangas and J. Laaksonen. 1996. Sompak: The self-organizing map program package. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science.
  16. Koo, B.H. and K.G. Kim. 2001. A Study on the Assessment for the Functions of Inland Wetlands Using RAM (Rapid Assessment Method). Journal of Korean Environmental Restoration Technology 4(3): 38-48.
  17. Kuczynska-Kippen, N. and B. Nagengast. 2006. The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. https://doi.org/10.1007/s10750-005-0867-0
  18. Kwak, T.J. 1988. Lateral movement and use of floodplain habitat by fishes of the Kankakee River, Illinois. American Midland Naturalist 241-249.
  19. Lehtinen, R.M., S.M. Galatowitsch and J.R. Tester. 1999. Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands 19: 1-12. https://doi.org/10.1007/BF03161728
  20. Manatunge, J., T. Asaeda and T. Priyadarshana. 2000. The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environmental Biology of Fishes 58: 425-438. https://doi.org/10.1023/A:1007691425268
  21. Mitsch, W. J. and J.G. Gosselink. 2000. The value of wetlands: importance of scale and landscape setting. Ecological Economics 35(1): 25-33. https://doi.org/10.1016/S0921-8009(00)00165-8
  22. Park, M.O., B.H. Koo and H.N. Kim. 2009. Characteristics and Function Assessment of Inland Wetlands in Chungnam province. Journal of Korean Environmental Restoration Technology 12(5): 92-100.
  23. Robertson, M. 2000. No net loss: wetland restoration and the incomplete capitalization of nature. Antipode 32: 463-493. https://doi.org/10.1111/1467-8330.00146
  24. Salzman, J. and J.B. Ruhl. 2005. 'No net loss' - instrument choice in wetlands protection. Technology & Innovation Research Paper Series 1: 1-24.
  25. Semlitsch, R.D. and J.R. Bodie. 1998. Are small isolated wetlands expendable? Conservation Biology 24(5): 1129- 1133.
  26. Sutton-Grier, A.E. and J.P. Megonigal. 2011. Plant species traits regulate methane production in freshwater wetland soils. Soil Biology & Biochemistry 43: 413-420. https://doi.org/10.1016/j.soilbio.2010.11.009
  27. Tilton, D.L., K. Shaw, B. Ballard and W. Thomas. 2001. A wetland protection plan for the lower on subwatershed of the Rouge River. Rouge River National Wet Weather Demonstration Protect.
  28. Turner, R.E., A.M. Redmond and J.B. Zedler. 2001. Count it by acre or function-mitigation adds up to net loss of wetlands. National Wetlands Newsletter 23: 5-16.
  29. Verhoeven, J.T.A. and T.L. Setter. 1989. Agricultural use of wetlands: opportunities and limitations. Annals of Botany 105: 155-163.
  30. Warfe, D.M. and L.A. Barmuta. 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171-178. https://doi.org/10.1007/s00442-004-1644-x
  31. Wood, P.J., M.T. Greenwood and M.D. Agnew. 2003. Pond biodiversity and habitat loss in the UK. Area 35: 206-216. https://doi.org/10.1111/1475-4762.00249
  32. Zhu, G.B., S.Y. Wang, X.J. Feng, G.N. Fan, M.S. M. Jetten and C.Q. Yin. 2011. Anammox bacterial abundance, biodiversity and activity in a constructed wetland. Environmental Science & Technology 45: 9951-9958. https://doi.org/10.1021/es202183w