DOI QR코드

DOI QR Code

Comparison of the Flexion-Relaxation Ratio of the Hamstring Muscle and Lumbopelvic Kinematics During Forward Bending in Subjects With Different Hamstring Muscle Flexibility

  • Kim, Chang-ho (Dept. of Physical Therapy, The Graduate School, Yonsei University) ;
  • Gwak, Gyeong-tae (Dept. of Physical Therapy, The Graduate School, Yonsei University) ;
  • Kwon, Oh-yun (Dept. of Physical Therapy, College of Health Science, Yonsei University)
  • Received : 2017.07.18
  • Accepted : 2017.10.26
  • Published : 2017.11.19

Abstract

Background: Flexion-relaxation phenomenon (FRP) was a term which refers to a sudden onset of myoelectric silence in the erector spinae muscles of the back during standing full forward flexion. Hamstring muscle length may be related to specific pelvic and trunk movements. Many studies have been done on the FRP of the erector spinae muscles. However, no studies have yet investigated the influence of hamstring muscle flexibility on the FRP of the hamstring muscle and lumbopelvic kinematics during forward bending. Objects: The purpose of this study was to examine the flexion-relaxation ratio (FRR) of the hamstring muscles and lumbopelvic kinematics and compare them during forward bending in subjects with different hamstring muscle flexibility. Methods: The subjects of two different groups were recruited using the active knee extension test. Group 1-consisted of 13 subjects who had a popliteal angle under $30^{\circ}$; Group 2-consisted of 13 subjects who had a popliteal angel above $50^{\circ}$. The kinematic parameters during the trunk bending task were recorded using a motion analysis system and the FRRs of the hamstring muscles were calculated. Differences between the groups were identified with an independent t-test. Results: The subjects with greater hamstring length had significantly less lumbar spine flexion movement and more pelvic flexion movement. The subjects with greater pelvic flexion movement had a higher rate of flexion relaxation during full trunk bending (p<.05). Conclusion: The results of this study suggest that differences in hamstring muscle flexibility might cause changes in people's hamstring muscle activity and lumbopelvic kinematics.

Keywords

References

  1. Ahern DK, Follick MJ, Council JR, et al. Comparison of lumbar paravertebral EMG patterns in chronic low-back pain patients and non-patient controls. Pain. 1988;34(2):153-160. https://doi.org/10.1016/0304-3959(88)90160-1
  2. Alschuler KN, Wiggert RE, Haig AJ, et al. Flexion-relaxation and clinical features associated with chronic low back pain: A comparison of different methods of quantifying flexion-relaxation. Clin J Pain. 2009;25(9):760-766. https://doi.org/10.1097/AJP.0b013e3181b56db6
  3. Cailliet R. Low Back Pain Syndrome. 5th ed. Philadelphia, F.A., Davis Co. 1995;17-55.
  4. Callaghan JP, Dunk NM. Examination of the flexion relaxation phenomenon in erector spinae muscles during short duration slumped sitting. Clin Biomech (Bistol, Avon). 2002;17(5):353-360. https://doi.org/10.1016/S0268-0033(02)00023-2
  5. Childs JD, Fritz JM, Flynn TW, et al. A clinical prediction rule to identify patients with low back pain most likely to benefit from spinal manipulation: A validation study. Ann Intern Med. 2004;141(12):920-928. https://doi.org/10.7326/0003-4819-141-12-200412210-00008
  6. Cibulka MT, Sinacore DR, Cromer GS, et al. Unilateral hip rotation range of motion asymmetry in patients with sacroiliac joint regional pain. Spine (Phila Pa, 1976). 1998;23(9):1009-1015. https://doi.org/10.1097/00007632-199805010-00009
  7. Cibulka MT. Low back pain and its relation to the hip and foot. J Orthop Sports Phys Ther. 1999;29(10):595-601. https://doi.org/10.2519/jospt.1999.29.10.595
  8. Congdon R, Bohannon R, Tiberio D. Intrinsic and imposed hamstring length influence posterior pelvic rotation during hip flexion. Clin Biomech (Bristol, Avon). 2005;20(9):947-951. https://doi.org/10.1016/j.clinbiomech.2005.03.011
  9. Dickey JP, McNorton S, Potvin JR. Repeated spinal flexion modulates the flexion-relaxation phenomenon. Clin Biomech (Bristol, Avon). 2003;18(9):783-789. https://doi.org/10.1016/S0268-0033(03)00166-9
  10. Dewberry MJ, Bohannon RW, Tiberio D, et al. Pelvic and femoral contributions to bilateral hip flexion by subjects suspended from a bar. Clin Biomech (Bristol, Avon). 2003;18(6):484-499.
  11. Dolan P, Mannion AF, Adams MA. Passive tissues help the back muscles to generate extensor moments during lifting. J Biomech. 1994;27(8):1077-1085. https://doi.org/10.1016/0021-9290(94)90224-0
  12. Edgar MA. The nerve supply of the lumbar intervertebral disc. J Bone Joint Surg Br. 2007;89(9):1135-1139. https://doi.org/10.2106/00004623-200705000-00037
  13. Ellison JB, Rose SJ, Sahrmann SA. Patterns of hip rotation range of motion: acomparison between healthy subjects and patients with low back pain. Phys Ther. 1990;70(9):537-541. https://doi.org/10.1093/ptj/70.9.537
  14. Esola, MA, McClure PW, Fitzgerald GK, et al. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine (Phila Pa, 1976) 1996;21(1):71-78. https://doi.org/10.1097/00007632-199601010-00017
  15. Fairbank JC, Pynsent PB, Van Poortvliet JA, et al. Influence of anthropometric factors and joint laxity in the incidence of adolescent back pain. Spine (Phila Pa, 1976). 1984;9(5):461-464. https://doi.org/10.1097/00007632-198407000-00007
  16. Floyd WF, Silver PHS. The function of erector spinae muscles in certain movements and postures in man. J Physiol. 1955;129:184-203. https://doi.org/10.1113/jphysiol.1955.sp005347
  17. Floyd WF, Silver PH. Function of the erectores spinae in flexion of the trunk. Lancet. 1951;1(6647):133-134.
  18. Flynn T, Fritz J, Whitman J, et al. A clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. Spine (Phila Pa, 1976). 2002;27(24):2835-2843. https://doi.org/10.1097/00007632-200212150-00021
  19. Frank C, Amiel D, Woo SL, et al. Normal ligament properties and ligament healing. Clin Orthop Rel at Res. 1985;(196):15-25.
  20. Gajdosik GL, Lusin G. Hamstring muscle tightness. Reliability of an active knee-extension-test. Phys Ther. 1983;63(7):1085-1090. https://doi.org/10.1093/ptj/63.7.1085
  21. Gajdosik RL, Albert CR, Mitman JJ. Influence of hamstring length on the standing position and flexion range of motion of the pelvic angle, lumbar angle, and thoracic angle. J Orthop Sports Phys Ther. 1994;20(4):213-219. https://doi.org/10.2519/jospt.1994.20.4.213
  22. Gajdosik RL, Hatcher CK, Whitsell S. Influence of short hamstring muscles on the pelvis and lumbar spine in standing and during the toe-touch test. Clin Biomech (Bristol, Avon). 1992;7(1):38-42. https://doi.org/10.1016/0268-0033(92)90006-P
  23. Golding JSR .Electromyography of the erector spinae in low back pain. Postgrad Med J. 1952;28:401-406. https://doi.org/10.1136/pgmj.28.321.401
  24. Harris-Hayes M, Sahrmann SA, Van Dillen LR. Relationship between the hip and low back pain in athletes who participate in rotation-related sports. J Sport Rehabil. 2009;18(1):60-75. https://doi.org/10.1123/jsr.18.1.60
  25. Hicks GE, Fritz JM, Delitto A, et al. Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Arch Phys Med Rehabil. 2005;86(9):1753-1762. https://doi.org/10.1016/j.apmr.2005.03.033
  26. Holm S, Indahl A, Solomonow M. Sensorimotor control of the spine. J Electromyogr Kinesiol. 2002;12:219-234. https://doi.org/10.1016/S1050-6411(02)00028-7
  27. Kim MH, Yi CH, Kwon OY, et al. Comparison of lumbopelvic rhythm and flexion-relaxation response between 2 different low back pain subtypes. Spine. 2013;38(15):1260-1267. https://doi.org/10.1097/BRS.0b013e318291b502
  28. Leinonen V, Kankaanpaa M, Airaksinen O, et al. Back and hip extensor activities during trunk flexion/extension: Effects of low back pain and rehabilitation. Arch Phys Med Rehabil. 2000;81(1):32-37. https://doi.org/10.1016/S0003-9993(00)90218-1
  29. Lundberg A. On the use of bone and skin markers in kinematics research. Hum Mov Sci. 1996;15(3):411-422. https://doi.org/10.1016/0167-9457(96)00008-5
  30. Macintosh JE, Bogduk N, Pearcy MJ. The effects of flexion on the geometry and actions of the lumbar erector spinae. Spine (Phila Pa, 1976). 1993;18:884-893. https://doi.org/10.1097/00007632-199306000-00013
  31. Marshall PW, Mannion J, Murphy BA. The eccentric, concentric strength relationship of the hamstring muscles in chronic low back pain. J Electromyogr Kinesiol. 2010;20(1):39-45. https://doi.org/10.1016/j.jelekin.2009.04.005
  32. Mathieu PA, Fortin M. EMG and kinematics of normal subjects performing trunk flexion/extensions freely in space. J Electromyogr Kinesiol. 2000;10(3):197-209. https://doi.org/10.1016/S1050-6411(00)00008-0
  33. Mayora-Vega D, Merino-Marban R, Garcia-Romero JC. Validity of sit and reach with plantar flexion test in children aged 10-12 years. RIMCAFD. 2015;15(59):577-591.
  34. McGill SM, Kippers V. Transfer of loads between lumbar tissues during the flexion relaxation phenomenon. Spine (Phila Pa, 1976). 1994;19(19):2190-2196. https://doi.org/10.1097/00007632-199410000-00013
  35. McGorry RW, Hsiang SM, Fathallah FA et al. Timing of activation of the erector spinae and hamstrings during a trunk flexion and extension task. Spine (Phila Pa, 1976). 2001;26(4):418-425. https://doi.org/10.1097/00007632-200102150-00019
  36. McLain RF. Mechanoreceptor endings in human cervical facet joints. Spine (Phila Pa, 1976). 1994;19:495-501. https://doi.org/10.1097/00007632-199403000-00001
  37. Mellin G. Correlations of hip mobility with degree of back pain and lumbar spinal mobility in chronic low-back pain patients. Spine (Phila Pa, 1976). 1988;13:668-670. https://doi.org/10.1097/00007632-198813060-00012
  38. Mellin G. Decreased joint and spinal mobility associated with low back pain in young adults. J Spinal Disord. 1990;3(3):238-243.
  39. Neumann DA. Kinegiology of the Musculoskeletal System: Foundations for physical rehabilitation, 1st ed., St Louis, Mosby, 2002:307-423.
  40. Ning X, Haddad O, Jin S, et al. Influence of asymmetry on the flexion relaxation response of the low back musculature. Clin Biomech (Bistol, Avon). 2011;26(1):35-39. https://doi.org/10.1016/j.clinbiomech.2010.08.012
  41. Nourbakhsh MR, Arab AM. Relationship between mechanical factors and incidence of low back pain. J Orthop Sports Phys Ther. 2002;32(9):447-460. https://doi.org/10.2519/jospt.2002.32.9.447
  42. O'Sullivan PB, Grahamslaw KM, Kendell M et al. The effect of different standing and sitting postures on trunk muscle activity in a pain-free population. Spine (Phila Pa, 1976). 2002;27:1238-1244. https://doi.org/10.1097/00007632-200206010-00019
  43. O'Sullivan PB. Lumbar segmental ‘instability': Clinical presentation and specific stabilizing exercise management. Man Ther. 2000;5(1):2-12. https://doi.org/10.1054/math.1999.0213
  44. Raftopoulos DD, Rafko MC, Green M, et al. Relaxation phenomenon in lumbar trunk muscles during lateral bending. Clin Biomech (Bistol, Avon). 1988;3(3):166-172. https://doi.org/10.1016/0268- 0033(88)90063-0
  45. Sahrmann SA. Diagnosis and Treatment of Movement Impairment Syndromes. 1st ed. St. Louis. Mosby. 2002:121-143.
  46. Sarti MA, Lison JF, Monfort M, et al. Response of the flexion-relaxation phenomenon relative to the lumbar motion to load and speed. Spine (Phila Pa, 1976). 2001;26(18):E421-E426. https://doi.org/10.1097/00007632-200109150-00019
  47. Schultz AB, Haderspeck-Grib K, Sinkora G, et al. Quantitative studies of the flexion-relaxation phenomenon in the back muscles. J Orthop Res. 1985;3(2):189-197. https://doi.org/10.1002/jor.1100030208
  48. Schinkel-Ivy A, Nairn BC, Drake JD. Evaluation of methods for the quantification of the flexion-relaxation phenomenon in the lumbar erector spinae muscles. J Manipulative Physiol Ther. 2013;36(6):349-358. https://doi.org/10.1016/j.jmpt.2013.05.017
  49. Schinkel-Ivy A, Nairn BC, Drake JDM. Quantification of the Lumbar flexion relaxation phenomenon: Comparing outcomes of lumbar erector spinae and superficial lumbar multifidus in standing full trunk flexion and slumped sitting postures. J Manip Physiol Ther. 2014;37(7):494-501. https://doi.org/10.1016/j.jmpt.2014.07.003
  50. Sekine M, Yamashita T, Takebayashi T et al. Mechanosensitive afferent units in the lumbar posterior longitudinal ligament. Spine (Phila Pa, 1976). 2001;26(14):1516-521. https://doi.org/10.1097/00007632-200107150-00003
  51. Shin G, D'Souza C, Liu Y. Creep and fatigue development in the low back in static flexion. Spine (Phila Pa, 1976). 2009;34:1873-1878. https://doi.org/10.1097/brs.0b013e3181aa6a55
  52. Shin G, Shu Y, Li Z, et al. Influence of knee angle and individual flexibility on the flexion-relaxation response of the low back musculature. J Electromyogr Kinesiol. 2004;14(4):485-494. https://doi.org/10.1016/j.jelekin.2003.12.001
  53. Shirado O, Ito T, Kandea K, et al. Flexion-relaxation phenomenon in the back muscles. A comparative study between healthy subjects and patients with chronic low back pain. Am J Phys Med Rehabil. 1995;74(2):139-144. https://doi.org/10.1097/00002060-199503000-00010
  54. Shum GL, Crosbie J, Lee RY. Three-dimensional kinetics of the lumbar spine and hips in low back pain patients during sit-to-stand and stand-to-sit. Spine (Phila Pa, 1976). 2007;32(7):E211-E219. https://doi.org/10.1097/01.brs.0000259204.05598.10
  55. Sihvonen T. Flexion relaxation of the hamstring muscles during lumbarpelvic rhythm. Arch Phys Med Rehabil. 1997;78(5):486-490. https://doi.org/10.1016/S0003-9993(97)90161-1
  56. Solomonow M, Zhou BH, Baratta RV, et al. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: Part 1. Loss of reflexive muscular stabilization. Spine (Phila Pa, 1976). 1999;24(23):2426-2434. https://doi.org/10.1097/00007632-199912010-00003
  57. Solomonow M, Zhou BH, Baratta RV, et al. Neuromuscular disorders associated with static lumbar flexion: a feline model. J Electromyogr Kinesiol. 2002;12(2):81-90. https://doi.org/10.1016/S1050-6411(01)00032-3
  58. Soslowsky L, Thomopoulos S, Tun S, et al. Overuse activity injury in supraspinatus tendon in an animal model: A histologic and biomechanical study. J Shoulder Elbow Surg. 2000;9(2):79-84. https://doi.org/10.1067/mse.2000.101962
  59. Toussaint HM, de Winter AF, de Haas Y, et al. Flexion relaxation during lifting: implications for torque production by muscle activity and tissue strain at the lumbo-sacral joint. J Biomech. 1995;28(2):199-210. https://doi.org/10.1016/0021-9290(94)00051-5
  60. Vadivelan K, Priyaraj B. influence of two different sitting postures on hamstring muscle flexibility in school going chilidren. Int J Physiother. 2015;2(2):459-464.
  61. Watson PJ, Booker CK, Main CJ, et al. Surface electromyography in the identification of chronic low back pain patients: The development of the flexion relaxation ratio. Clin Biomech (Bistol, Avon). 1997;12(3):165-171. https://doi.org/10.1016/S0268-0033(97)00065-X
  62. Wong TK, Lee RY. Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Hum Mov Sci. 2004;23(1):21-34. https://doi.org/10.1016/j.humov.2004.03.004
  63. Yamashita T, Cavanaugh JM, el-Bohy AA, et al. Mechanosensitive afferent units in the lumbar facet joint. J Bone Joint Surg Am. 1990;72(6):865-870. https://doi.org/10.2106/00004623-199072060-00011
  64. Zuriaga DS, Perez CA, Roig GB. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension. J Electromyogr Kinesiol. 2016;28:152-157. https://doi.org/10.1016/j.jelekin.2016.04.007