DOI QR코드

DOI QR Code

High-Altitude Environment Simulation of Space Launch Vehicle in a Ground-Test Facility

지상시험장비를 통한 우주발사체 고공환경모사 기법 연구

  • Lee, Sungmin (Korea Advanced Institute of Science and Technology) ;
  • Oh, Bum-Seok (Korea Aerospace Research Institute) ;
  • Kim, YoungJun (Korea Aerospace Research Institute) ;
  • Park, Gisu (Korea Advanced Institute of Science and Technology)
  • Received : 2017.07.28
  • Accepted : 2017.10.24
  • Published : 2017.11.01

Abstract

The experimental research on a high-altitude environment simulation of space launch vehicle is important for securing independent technologies with launching space vehicles and completing missions. This study selected an altitude of 65 km for the experiment environment where it exceeded Mach number of 6 after the launch of Korean Space Launch Vehicle(KSLV-II). Shock tunnel was used to replicate the flight condition. After flow establishment, in order to confirm aerodynamic characteristics and normal and oblique shockwaves, the flow verification was carried out by measuring stagnation pressure and heat flux of a forebody model, and shockwave stand-off distance of a hemispherical model. In addition, a shock-free technique to recover free-stream condition has been developed and verified. From the results of the three verification tests, it was confirmed that the flow was replicated with the error of about ${\pm}3%$. The error between the slope angle of inclined shockwave of the scaled down transition section model using the shock-free shape and the slope angle of the horizontal plate model, and between the theoretical and the experimental value of the static pressure of the model were confirmed to be 2% and 1%, respectively. As a result, the efficiency of the shockwave cancellation technique has been verified.

우주발사체 고공환경모사의 실험적 연구는 우주발사체 발사 및 임무완수에 대한 독자적 기술력 확보를 위해 중요하다. 본 연구는 한국형발사체(Korean Space Launch Vehicle; KSLV-II)의 발사 후 마하수 6을 돌파하는 고도 65 km 조건을 선정하였다. 지상시험장비중 하나인 충격파 터널을 이용하여 고공환경모사를 수행하였다. 유동발달 이후 공기열역학적 특성과 수직 및 경사충격파 확인을 위해 선두부 모델의 정체 압력과 정체 열 유량, 그리고 반구형상 모델의 충격파 이탈거리 측정을 통해 유동검증을 수행하였다. 추가적으로 발사체 측면과 저부면 현상연구에 사용되는 시험모델의 자유류 회복을 위한 충격파 상쇄 기법을 개발 및 검증하였다. 세 가지 유동검증 결과를 통해 이론값과 약 ${\pm}3%$ 이내의 오차를 갖는 정확한 유동이 발달되었음을 확인하였다. 그리고 충격파 상쇄기법을 갖는 천이구간 축소 모델의 경사충격파 경사각과 수평 평판모델의 경사각, 그리고 모델 측면 정압력의 실험값과 이론값의 오차가 각각 2%, 그리고 1% 으로 확인되었으며, 이를 통해 해당 충격파 상쇄 기법의 합리적인 효과가 검증되었다.

Keywords

References

  1. Stephan, S., Radespiel, R., and Muller-Eigner, R., "Jet Simulation Facility using the Ludwieg Tube Principle," 5th European Conference for Aeronautics and Space Sciences(EUCASS), 2013.
  2. Stephan, S., Wu, J., and Radespiel, R., "Propulsive Jet Influence on Generic Launcher Base Flow," CEAS Space J., Vol.7, No. 4, 2015, pp.453-473. https://doi.org/10.1007/s12567-015-0098-9
  3. Nallasamy, R., Kandula, M., Duncil, L., and Schallhorn, P., "Numerical Simulation of the Base Flow and Heat Transfer Characteristics of a Four-Nozzle Clustered Rocket Engine," 40th Thermophysics Conference, AIAA 2008-4128, 2008.
  4. Saile, D., and Gulhan, A., "Plume-Induced Effects on the Near-Wake Region of a Generic Space Launcher Geometry," 32nd AIAA Applied Aerodynamics Conference, AIAA 2014-3137, 2014.
  5. Lee, J. H., Ok, Honam, Kim, Y., and Kim, I., "A Numerical Analysis of Aerodynamic Characteristics and Loads for KSLV-II Configuration at the System Design Phase," Aerospace Engineering and Technology, Vol. 12, No. 1, 2013, pp.73-80.
  6. Jeon, W., Baek, S., Park, J., and Ha, D., "Rocket Plume Analysis with DSMC Method," Journal of KSPE, Vol. 18, No. 5, 2014, pp.54-61. https://doi.org/10.6108/KSPE.2014.18.5.054
  7. Ahn, S. J., Hur, N., and Kwon, O. J., "Numerical Investigation of Plume-Induced Flow Separation for a Space Launch Vehicle," Journal Comput. Fluids Eng., Vol. 18, No. 2, 2013, pp.66-71. https://doi.org/10.6112/kscfe.2013.18.2.066
  8. Lee, S., Song, H., Lee, J. K., and Park, G., "Free-Falling Heated Sphere in a Shock Tunnel," AIAA Journal, Vol. 55, No. 11, 2017, pp.3995-3998. https://doi.org/10.2514/1.J055967
  9. "Equations, Tables, and Charts for Compressible Flow," NACA Rept. 1135, 1953.
  10. Gas Dynamics Calculator[online database], Univ. of Wisconsin, Wisconsin Shock Tube Lab., Madison, WI, http://silver.neep.wisc.edu/-shock/tools/gdcalc.html [retrieved 28 Oct. 2016]
  11. Park, G., "Hypervelocity Aerothermodynamics of Blunt Bodies Including Real Gas Effects," Ph.D. Thesis, Univ. of New South Wales, Canberra, Australia, 2010.
  12. Fay, J. A., and Riddell, F. R., "Theory of Stagnation Point Heat Transfer in Dissociated Air," Journal of the Aerospace Sciences, Vol. 25, No. 2, 1958, pp.73-85. https://doi.org/10.2514/8.7517
  13. Serbin, H., "Supersonic Flow Around Blunt Bodies," Journal of the Aeronautical Sciences, Vol. 25, No. 1, 1958, pp.58-59.
  14. Liepmann, H. W., and Roshko, A., "Elements of Gas Dynamics," John Wiley and Sons, New York, 1957, pp.102-106.
  15. Moffat, R. J., "Describing the Uncertainties in Experimental Results," Experimental Thermal and Fluid Science, Vol. 1, 1988, pp.3-17. https://doi.org/10.1016/0894-1777(88)90043-X
  16. Compressible Aerodynamics Calculator, http://www.dept.aoe.vt.edu/-devenpor/aoe3114/calc.html, Javascript by William J. Devenport, Department of Aerospace and Ocean Engineering, Virginia Tech, retrieved on October 11, 2017.