DOI QR코드

DOI QR Code

Magnetic field effect on the onset of Soret-driven convection of a nanofluid confined within a Hele-Shaw cell

  • Kim, Min Chan (Department of Chemical Engineering, Jeju National University)
  • Received : 2016.04.23
  • Accepted : 2016.07.23
  • Published : 2017.01.01

Abstract

The effect of a magnetic field on the early stages of Soret-driven convection of a nanoparticle suspension with large negative separation ratio ${\chi}$ confined within a Hele-Shaw cell, heated from above, was analyzed. Taking the Lorentz force into account, new stability equations were formulated in a similar (${\tau}$, ${\zeta}$)-domain as well as in a global (${\tau}$, z)-domain by introducing the Hele-Shaw Rayleigh number based on the Soret flux ($Rs_H$) and the Hele-Shaw Hartmann number ($Ha_H$). With and without the quasi-steadiness assumptions, the resulting stability equations were solved analytically by expanding the disturbances as a series of orthogonal functions, and also the numerical shooting method was used. The critical time of the onset of convection and the corresponding wave number were obtained as a function of $Rs_H$ and $Ha_H$. It was found that the magnetic field plays a critical role in the onset of convective instability. The onset time increases with increasing $Ha_H$ and decreasing $Rs_H$. The linear stability limits are independent of the solution methods, if the trial functions for the disturbance quantities are properly chosen. Based on the results of the linear stability analysis, a non-linear analysis was conducted using direct numerical simulations. The non-linear analysis revealed that the convective motion can be apparent far after the linear stability limit.

Keywords

Acknowledgement

Supported by : Jeju National University.

References

  1. R. Taylor, S, Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher and H. Tyagi, J. Appl. Phys., 113, 011301 (2013). https://doi.org/10.1063/1.4754271
  2. A. Ryskin and H. Pleiner, Phys. Rev. E, 71, 056303 (2005). https://doi.org/10.1103/PhysRevE.71.056303
  3. R. Cerbino, A. Vailati and M. Giglio, Phys. Rev. E, 66, 055301 (2002). https://doi.org/10.1103/PhysRevE.66.055301
  4. R. Cerbino, A. Vailati and M. Giglio, Phiilos Mag., 83, 2023 (2003). https://doi.org/10.1080/0141861031000108178
  5. R. Cerbino, S. Mazzoni, A. Vailati and M. Giglio, Phys. Rev. Lett., 94, 064501 (2005). https://doi.org/10.1103/PhysRevLett.94.064501
  6. S. Mazzoni, R. Cerbino, D. Brogioli, A. Vailati and M. Giglio, Eur. Phys. J. E, 15, 305 (2004). https://doi.org/10.1140/epje/i2004-10070-8
  7. F. Winkel, S. Messlinger, W. Schopf, I. Rehberg, M. Siebenburger and M. Ballauff, New J. Phys., 12, 053003 (2010). https://doi.org/10.1088/1367-2630/12/5/053003
  8. S. Messlinger, C. Kramer, J. J. Schmied, F. Winkel, W. Schopf and I. Rehberg, Phys. Rev. E, 88, 053019 (2013a). https://doi.org/10.1103/PhysRevE.88.053019
  9. M. C. Kim, J. S. Hong and C. K. Choi, AIChE J., 52, 2333 (2006). https://doi.org/10.1002/aic.10872
  10. M.C. Kim and C. K. Choi, Phys. Rev. E, 76, 036302 (2007).
  11. M.C. Kim, Eur. Phys. J. E, 34, 27 (2011). https://doi.org/10.1140/epje/i2011-11027-6
  12. M.C. Kim, Korean J. Chem. Eng., 30, 831 (2013). https://doi.org/10.1007/s11814-012-0203-0
  13. S. Messlinger, W. Schopf and I. Rehberg, Int. J. Heat Mass Transfer, 62, 336 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.076
  14. L.N. Howard, Convection at high Rayleigh number, in: H. Gortler (Ed.), Proceedings of 11th International Congress of Applied Mechanics, Munich (Germany), 1109 (1964).
  15. W. Schopf, J. Fluid Mech., 245, 263 (1992). https://doi.org/10.1017/S0022112092000454
  16. M.C. Kim, Int. J. Non-Linear Mech., 67, 291 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.09.015
  17. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press (1961).
  18. A. J. Harfash, Transp Porous Med., 103, 361 (2014). https://doi.org/10.1007/s11242-014-0305-8
  19. H. Heidary, R. Hosseini, M. Pirmohammadi and M. J. Kermani, J. Magn. Magn. Mater., 374, 11 (2015). https://doi.org/10.1016/j.jmmm.2014.08.001
  20. G. P. Galdi and B. Straughan, Arch. Rational Mech. Anal., 89, 211 (1985). https://doi.org/10.1007/BF00276872
  21. A. Riaz, M. Hesse, H.A. Tchelepi and F. M. Orr Jr., J. Fluid Mech., 548, 87 (2006). https://doi.org/10.1017/S0022112005007494
  22. A. Selim and D. A. S. Rees, J. Porous Media, 10, 1 (2007). https://doi.org/10.1615/JPorMedia.v10.i1.10
  23. M.C. Kim and C. K. Choi, Korean J. Chem. Eng., 32, 2400 (2015). https://doi.org/10.1007/s11814-015-0035-9
  24. A. Noghrehabadi, D. A. S. Rees and A. P. Bassom, Transp. Porous Med., 99, 493 (2013). https://doi.org/10.1007/s11242-013-0197-z
  25. M.C. Kim and C. K. Choi, Chem. Eng. Sci., 98, 255 (2013). https://doi.org/10.1016/j.ces.2013.05.020
  26. W.M. Deen, Analysis of Transport Phenomena, Oxford Univ. Press (1997).
  27. B. F. Farrell and P. J. Ioannou, J. Atmos. Sci., 53, 2041 (1996). https://doi.org/10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2
  28. M.C. Kim and C. K. Choi, Phys. Fluids, 24, 044102 (2012). https://doi.org/10.1063/1.3703330
  29. M.C. Kim, Korean J. Chem. Eng., 30, 1207 (2013). https://doi.org/10.1007/s11814-013-0039-2
  30. C.T. Tan and G.M. Homsy, Phys. Fluids, 31, 1330 (1988). https://doi.org/10.1063/1.866726
  31. G. Donzelli, R. Cerbino and A. Vailati, Phys. Rev. Lett., 102, 104503 (2009). https://doi.org/10.1103/PhysRevLett.102.104503
  32. M. Bernardin, F. Comitani and A. Vailati, Phys. Rev. E, 85, 066321 (2012). https://doi.org/10.1103/PhysRevE.85.066321

Cited by

  1. Convection of a colloidal suspension in a Hele-Shaw cell vol.40, pp.2, 2017, https://doi.org/10.1140/epje/i2017-11502-0
  2. Double diffusive effects on radial fingering in a porous medium or a Hele-Shaw cell vol.35, pp.2, 2017, https://doi.org/10.1007/s11814-017-0271-2
  3. The Onset and Growth of the Buoyancy-driven Fingering Driven by the Irreversible A+B→C Reaction in a Porous Medium: Reactant Ratio Effect vol.59, pp.1, 2017, https://doi.org/10.9713/kcer.2021.59.1.138