DOI QR코드

DOI QR Code

The effects of mineral salt catalysts on selectivity of phenolic compounds in bio-oil during microwave pyrolysis of peanut shell

  • Mamaeva, Alisa (Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning) ;
  • Tahmasebi, Arash (Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning) ;
  • Yu, Jianglong (Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning)
  • Received : 2016.05.08
  • Accepted : 2016.10.15
  • Published : 2017.03.01

Abstract

Catalytic microwave pyrolysis of peanut shell (PT) using $Fe_3O_4$, $Na_2CO_3$, NaOH, and KOH for production of phenolic-rich bio-oil was investigated. The effects of catalyst type, pyrolysis temperature, and biomass/catalyst ratio on product distribution and composition were studied. Among four catalysts tested, $Na_2CO_3$ significantly increased the selectivity of phenolic compounds in bio-oil during microwave pyrolysis. The highest phenolics concentration of 57.36% (area) was obtained at $500^{\circ}C$ and $PT:Na_2CO_3$ ratio of 8 : 1. The catalytic effect to produce phenolic compounds among all the catalysts tested can be summarized in the order $Na_2CO_3$>$Fe_3O_4$>KOH>NaOH. Using KOH and NaOH as catalyst resulted in formation of bio-oil with enhanced higher heating value (HHV) and lower oxygen content, indicating that these catalysts enhanced the deoxygenation of bio-oil. The scanning-electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analysis of char particles showed the melting of magnetite and vaporization-condensation of mineral salt catalysts on char particle, which was attributed to extremely high local temperatures during microwave heating.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. N. Wang, A. Tahmasebi, J. Yu, J. Xu, F. Huang and A. Mamaeva, Bioresour. Technol., 190, 89 (2015). https://doi.org/10.1016/j.biortech.2015.04.038
  2. A.V. Bridgwater, D. Meier and D. Radlein, Org. Geochem., 30, 1479 (1999). https://doi.org/10.1016/S0146-6380(99)00120-5
  3. S. Thangalazhy-Gopakumar, S. Adhikari, R. B. Gupta, M. Tu and S. Taylor, Bioresour. Technol., 102, 6742 (2011). https://doi.org/10.1016/j.biortech.2011.03.104
  4. J.D. Rocha, C.A. Luengo and C.E. Snape, Renew. Energy, 9, 950 (1996). https://doi.org/10.1016/0960-1481(96)88437-0
  5. K. D. Maher and D.C. Bressler, Bioresour. Technol., 98, 2351 (2007). https://doi.org/10.1016/j.biortech.2006.10.025
  6. K. Barta and P. C. Ford, Acc. Chem. Res., 47, 1503 (2014). https://doi.org/10.1021/ar4002894
  7. F. Abnisa, A. Arami-Niya, W. M.A. Wan Daud, J. N. Sahu and I.M. Noor, Energy Convers. Manage., 76, 1073 (2013). https://doi.org/10.1016/j.enconman.2013.08.038
  8. M. Tripathi, J. N. Sahu, P. Ganesan and J. Jewaratnam, Appl. Therm. Eng., 105, 605 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.053
  9. S. Thangalazhy-Gopakumar, W.M.A. Al-Nadheri, D. Jegarajan, J. N. Sahu, N.M. Mubarak and S. Nizamuddin, Bioresour. Technol., 178, 65 (2015). https://doi.org/10.1016/j.biortech.2014.09.068
  10. M.A. Hossain, J. Jewaratnam, P. Ganesan, J. N. Sahu, S. Ramesh and S. C. Poh, Energy Convers. Manage., 115, 232 (2016). https://doi.org/10.1016/j.enconman.2016.02.058
  11. Y. Wan, P. Chen, B. Zhang, C. Yang, Y. Liu, X. Lin and R. Ruan, J. Anal. Appl. Pyrol., 86, 161 (2009). https://doi.org/10.1016/j.jaap.2009.05.006
  12. Y. Wang, X. Hu, Y. Song, Z. Min, D. Mourant, T. Li, R. Gunawan and C.-Z. Li, Fuel Process. Technol., 116, 234 (2013). https://doi.org/10.1016/j.fuproc.2013.07.014
  13. R. Gunawan, X. Li, C. Lievens, M. Gholizadeh, W. Chaiwat, X. Hu, D. Mourant, J. Bromly and C.-Z. Li, Fuel, 111, 709 (2013). https://doi.org/10.1016/j.fuel.2013.04.002
  14. C. Yin, Bioresour. Technol., 120, 273 (2012). https://doi.org/10.1016/j.biortech.2012.06.016
  15. J. Chattopadhyay, J. E. Son and D. Pak, Korean J. Chem. Eng., 28, 1677 (2011). https://doi.org/10.1007/s11814-011-0027-3
  16. M.-q. Chen, J. Wang, M.-x. Zhang, M.-g. Chen, X.-f. Zhu, F.-f. Min and Z.-c. Tan, J. Anal. Appl. Pyrol., 82, 145 (2008). https://doi.org/10.1016/j.jaap.2008.03.001
  17. C. Peng, G. Zhang, J. Yue and G. Xu, Fuel Process. Technol., 124, 212 (2014). https://doi.org/10.1016/j.fuproc.2014.02.025
  18. H. J. Park, H. S. Heo, J.-H. Yim, J.-K. Jeon, Y. S. Ko, S.-S. Kim and Y.-K. Park, Korean J. Chem. Eng., 27, 73 (2010). https://doi.org/10.1007/s11814-009-0344-y
  19. M. Miura, H. Kaga, A. Sakurai, T. Kakuchi and K. Takahashi, J. Anal. Appl. Pyrol., 71, 187 (2004). https://doi.org/10.1016/S0165-2370(03)00087-1
  20. A.A. Salema and F.N. Ani, Bioresour. Technol., 125, 102 (2012). https://doi.org/10.1016/j.biortech.2012.08.002
  21. A. Effendi, H. Gerhauser and A.V. Bridgwater, Renew. Sust. Energy Rev., 12, 2092 (2008). https://doi.org/10.1016/j.rser.2007.04.008
  22. J.-S. Kim, Bioresour. Technol., 178, 90 (2015). https://doi.org/10.1016/j.biortech.2014.08.121
  23. S. Zhou, M. Garcia-Perez, B. Pecha, S.R.A. Kersten, A.G. McDonald and R. J.M. Westerhof, Energy Fuels, 27, 5867 (2013). https://doi.org/10.1021/ef4001677
  24. S.M. Abdul Aziz, R. Wahi, Z. Ngaini and S. Hamdan, Fuel Process. Technol., 106, 744 (2013). https://doi.org/10.1016/j.fuproc.2012.10.011
  25. Q. Bu, H. Lei, L. Wang, Y. Wei, L. Zhu, Y. Liu, J. Liang and J. Tang, Bioresour. Technol., 142, 546 (2013). https://doi.org/10.1016/j.biortech.2013.05.073
  26. Q. Lu, Z.-b. Zhang, X.-c. Yang, C.-q. Dong and X.-f. Zhu, J. Anal. Appl. Pyrol., 104, 139 (2013). https://doi.org/10.1016/j.jaap.2013.08.011
  27. N. Wang, A. Tahmasebi, J. Yu, J. Xu, F. Huang and A. Mamaeva, Bioresour. Technol., 190, 89 (2015). https://doi.org/10.1016/j.biortech.2015.04.038
  28. F. Meng, A. Tahmasebi, J. Yu, H. Zhao, Y. Han, J. Lucas and T. Wall, Energy Fuels, 28, 5612 (2014). https://doi.org/10.1021/ef501004t
  29. T. Yuan, A. Tahmasebi and J. Yu, Bioresour. Technol., 175, 333 (2015). https://doi.org/10.1016/j.biortech.2014.10.108
  30. J.A. Menendez, E. J. Juarez-Perez, E. Ruisanchez, J. M. Bermudez and A. Arenillas, Carbon, 49, 346 (2011). https://doi.org/10.1016/j.carbon.2010.09.010
  31. A.A. Salema and F.N. Ani, J. Anal. Appl. Pyrol., 96, 162 (2012). https://doi.org/10.1016/j.jaap.2012.03.018
  32. A. B. Namazi, D. Grant Allen and C.Q. Jia, Biomass Bioenergy, 73, 217 (2015). https://doi.org/10.1016/j.biombioe.2014.12.023
  33. Q. Bu, H. Lei, S. Ren, L. Wang, Q. Zhang, J. Tang and R. Ruan, Bioresour. Technol., 108, 274 (2012). https://doi.org/10.1016/j.biortech.2011.12.125
  34. A. Mamaeva, A. Tahmasebi, L. Tian and J. Yu, Bioresour. Technol., 211, 382 (2016). https://doi.org/10.1016/j.biortech.2016.03.120
  35. J. E. Omoriyekomwan, A. Tahmasebi and J. Yu, Bioresour. Technol., 207, 188 (2016). https://doi.org/10.1016/j.biortech.2016.02.002
  36. J.G. Brammer, M. Lauer and A.V. Bridgwater, Energy Policy, 34, 2871 (2006). https://doi.org/10.1016/j.enpol.2005.05.005
  37. J. S. Kim, S. J. Kim and S. H. Jung, Bioresour. Technol., 101, 9294 (2010). https://doi.org/10.1016/j.biortech.2010.06.110
  38. F. Meng, J. Yu, A. Tahmasebi, Y. Han, H. Zhao, J. Lucas and T. Wall, Energy Fuels, 28, 275 (2014). https://doi.org/10.1021/ef401423s
  39. M.C. Blanco Lopez, C.G. Blanco, A. Martinez-Alonso and J.M.D. Tascon, J. Anal. Appl. Pyrol., 65, 313 (2002). https://doi.org/10.1016/S0165-2370(02)00008-6

Cited by

  1. Effects of organic and inorganic metal salts on thermogravimetric pyrolysis of biomass components vol.34, pp.12, 2017, https://doi.org/10.1007/s11814-017-0209-8
  2. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2017, https://doi.org/10.5714/cl.2018.28.081
  3. In-Situ Catalytic Fast Pyrolysis of Pinecone over HY Catalysts vol.9, pp.12, 2017, https://doi.org/10.3390/catal9121034
  4. Synthesis of biobased phenolic resins using catalytic pyrolysis oil and its effect on oriented strand board performance vol.96, pp.5, 2017, https://doi.org/10.1080/00218464.2018.1481400