DOI QR코드

DOI QR Code

Removal of nitrate from constructed wetland in winter in high-latitude areas with modified hydrophyte biochars

  • Wang, Bo (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Liu, Si-yao (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Li, Fa-yun (Institute of Eco-environmental Sciences, Liaoning Shihua University) ;
  • Fan, Zhi-ping (Institute of Eco-environmental Sciences, Liaoning Shihua University)
  • Received : 2016.03.21
  • Accepted : 2016.11.01
  • Published : 2017.03.01

Abstract

In high-latitude areas, nitrate treatment from constructed wetlands is often not so good in winter. The study aims to develop an efficient and economic technology to remove nitrate from constructed wetland under the conditions of winter temperature. We conducted laboratory experiments to investigate the removal of nitrate from aqueous solution and wastewater by modified hydrophyte biochars from constructed wetlands. The second-order model fit the nitrate desorption kinetics of modified hydrophyte biochars with a high coefficient of determination ($R^2$>0.99). Freundlich isotherms performed well to fit the nitrate sorption data ($R^2$>0.98) of modified hydrophyte biochars. Batch adsorption experiments also showed that both initial solution pH and coexisting anions could affect the adsorption of nitrate onto modified hydrophyte biochars. Our results suggested that modified hydrophyte biochars might be a promising alternative wastewater treatment technology for nitrate removal from constructed wetland in winter in high-latitude areas.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, L. Wang, H. Xiao and S. Deng, Chemosphere, 119, 646 (2015). https://doi.org/10.1016/j.chemosphere.2014.07.084
  2. R.S. Quilliam, M.A. van Niekerk, D.R. Chadwick, P. Cross, N. Hanley, D. L. Jones, A. J. Vinten, N. Willby and D. M. Oliver, J. Environ. Manage., 152, 210 (2015). https://doi.org/10.1016/j.jenvman.2015.01.046
  3. O. Coban, P. Kuschk, U. Kappelmeyer, O. Spott, M. Martienssen, M. S. Jetten and K. Knoeller, Water Res., 74, 203 (2015). https://doi.org/10.1016/j.watres.2015.02.018
  4. A. Iribar, S. Hallin, J.M.S. Perez, K. Enwall, N. Poulet and F. Garabetian, Ecol. Eng., 80, 191 (2015). https://doi.org/10.1016/j.ecoleng.2015.02.002
  5. X. Xu, B. Gao, Y. Zhao, S. Chen, X. Tan, Q. Yue, J. Lin and Y. Wang, J. Hazard. Mater., 203, 86 (2012).
  6. A. Canion, W. A. Overholt, J. E. Kostka, M. Huettel, G. Lavik and M.M. Kuypers, Environ. Microbiol., 16, 3331 (2014). https://doi.org/10.1111/1462-2920.12593
  7. O.R. Stein and P.B. Hook, J. Environ. Sci. Health, 40, 1331 (2005). https://doi.org/10.1081/ESE-200055840
  8. A. Krevs, J. Darginaviciene, B. Gylyte, R. Grigutyte, S. Jurkoniene, R. Karitonas, A. Kucinskiene, R. Pakalnis, K. Sadauskas and R. Vitkus, Environ. Pollut, 173, 75 (2013). https://doi.org/10.1016/j.envpol.2012.09.016
  9. W. Zhang, Q. Li, X. Wang, Y. Ding and J. Sun, Biogeochemistry, 94, 1 (2009). https://doi.org/10.1007/s10533-009-9295-y
  10. M. Ahmad, A.U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee and Y. S. Ok, Chemosphere, 99, 19 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
  11. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun and X. Cao, Chem. Eng. J., 231, 512 (2013). https://doi.org/10.1016/j.cej.2013.07.036
  12. J.W. Gaskin, C. Steiner, K. Harris, K. C. Das and B. Bibens, Transactions of the ASABE, 51, 2061 (2008). https://doi.org/10.13031/2013.25409
  13. O. Masek, P. Brownsort, A. Cross and S. Sohi, Fuel, 103, 151 (2013). https://doi.org/10.1016/j.fuel.2011.08.044
  14. S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W. G. Harris and K.W. Migliaccio, Bioresour. Technol., 175, 391 (2015). https://doi.org/10.1016/j.biortech.2014.10.104
  15. A. Mukherjee, A.R. Zimmerman and W. Harris, Geoderma, 163, 247 (2011). https://doi.org/10.1016/j.geoderma.2011.04.021
  16. Y. Yao, B. Gao, M. Zhang, M. Inyang and A.R. Zimmerman, Chemosphere, 89, 1467 (2012). https://doi.org/10.1016/j.chemosphere.2012.06.002
  17. K. Ramirez-Muniz, F. Jia and S. Song, Environ. Chem., 9, 512 (2012). https://doi.org/10.1071/EN12120
  18. A.R. Zimmerman, B. Gao and M. Ahn, Soil Biol. Biochem., 43, 1169 (2011). https://doi.org/10.1016/j.soilbio.2011.02.005
  19. M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem and A.R. Usman, Bioresour. Technol., 131, 374 (2013). https://doi.org/10.1016/j.biortech.2012.12.165
  20. B. Chen, Z. Chen and S. Lv, Bioresour. Technol., 102, 716 (2011). https://doi.org/10.1016/j.biortech.2010.08.067
  21. M. Zhang and B. Gao, Chem. Eng. J., 226, 286 (2013). https://doi.org/10.1016/j.cej.2013.04.077
  22. Y. Yao, B. Gao, J. Chen, M. Zhang, M. Inyang, Y. Li, A. Alva and L. Yang, Bioresour. Technol., 138, 8 (2013). https://doi.org/10.1016/j.biortech.2013.03.057
  23. S. P. Sohi, E. Krull, E. Lopez-Capel and R. Bol, Adv. Agron., 105, 47 (2010).
  24. R. Chintala, J. Mollinedo, T. E. Schumacher, S. K. Papiernik, D.D. Malo, D. E. Clay, S. Kumar and D.W. Gulbrandson, Micropor. Mesopor. Mater., 179, 250 (2013). https://doi.org/10.1016/j.micromeso.2013.05.023
  25. S. E. Hale, V. Alling, V. Martinsen, J. Mulder, G.D. Breedveld and G. Cornelissen, Chemosphere, 91, 1612 (2013). https://doi.org/10.1016/j.chemosphere.2012.12.057
  26. M. E. Essington, Boca Raton, London, New York, Washington, DC (2004).
  27. C.C. Hollister, J. J. Bisogni and J. Lehmann, J. Environ. Qual., 42, 137 (2013). https://doi.org/10.2134/jeq2012.0033
  28. Y. Ho and G. McKay, Process. Biochem., 34, 451 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  29. G. Sposito, Soil Sci. Soc. Am. J., 44, 652 (1980). https://doi.org/10.2136/sssaj1980.03615995004400030045x
  30. A. Breeuwsma and J. Lyklema, J. Colloid Interf. Sci., 43, 437 (1973). https://doi.org/10.1016/0021-9797(73)90389-5
  31. M. Zhang, B. Gao, Y. Yao, Y. Xue and M. Inyang, Chem. Eng. J., 210, 26 (2012). https://doi.org/10.1016/j.cej.2012.08.052
  32. E. Bock, N. Smith, M. Rogers, B. Coleman, M. Reiter, B. Benham and Z. M. Easton, J. Environ. Qual., 44, 605 (2015). https://doi.org/10.2134/jeq2014.03.0111
  33. R. Chintala, J. Mollinedo, T. E. Schumacher, S. K. Papiernik, D.D. Malo, D. E. Clay, S. Kumar and D.W. Gulbrandson, Micropor. Mesopor. Mater., 179, 250 (2013). https://doi.org/10.1016/j.micromeso.2013.05.023
  34. X. Gai, H. Wang, J. Liu, L. Zhai, S. Liu, T. Ren and H. Liu, PloS one, 9, e113888 (2014). https://doi.org/10.1371/journal.pone.0113888

Cited by

  1. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2017, https://doi.org/10.5714/cl.2018.28.081
  2. Study on the influence of surface potential on the nitrate adsorption capacity of metal modified biochar vol.26, pp.3, 2017, https://doi.org/10.1007/s11356-018-3815-z
  3. Simultaneous NO/SO2 removal by coconut shell char/CaO from calcium looping in a fluidized bed reactor vol.37, pp.4, 2017, https://doi.org/10.1007/s11814-020-0483-8