DOI QR코드

DOI QR Code

Efficient oxidative removal of 4-tert-octylphenol and 17α-ethynylestradiol from aqueous solutions using ferrate(VI)

  • Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Sailo, Lalsaimawia (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Choi, Sang-Il (Department of Environmental Engineering, Kwangwoon University) ;
  • Yoon, Yi-Yong (Department of Health and the Environment, Catholic Kwandong University) ;
  • Lee, Seung-Mok (Department of Health and the Environment, Catholic Kwandong University)
  • Received : 2016.06.20
  • Accepted : 2016.11.20
  • Published : 2017.03.01

Abstract

Ferrate(VI) was utilized to treat micro-pollutants--4-tert-octylphenol (TOP) and $17{\alpha}$-ethynylestradiol (EE2)--from aqueous solutions. Batch studies were conducted at various pHs (7.0 to 12.0) and concentrations of TOP/or EE2 (0.03 to 0.3 mmol/L) using 0.1 mmol/L ferrate(VI). Time-dependent degradation of TOP and EE2 was assessed as a function of pH and micro-pollutant concentrations and we found that significant mineralization of micro-pollutants was achieved by ferrate(VI) treatment. Second-order kinetics showed 1 : 1 stoichiometry was obtained between the ferrate(VI) and TOP/or EE2. Further, the effect of several background electrolytes on degradation of TOP and EE2 by ferrate(VI) was evaluated, showing insignificant effect of degradation.

Keywords

References

  1. Thanhmingliana, S. M. Lee, D. Tiwari and S. K. Prasad, RSC Adv., 5, 46834 (2015). https://doi.org/10.1039/C4RA17197G
  2. S. A. Snyder, P. Westerhoff, Y. Yoon and D. L. Sedlak, Environ. Eng. Sci., 20, 449 (2003). https://doi.org/10.1089/109287503768335931
  3. A. Zafra-Gomez, O. Ballesteros, A. Navalon and J. L. Vilchez, Microchem. J., 88, 87 (2008). https://doi.org/10.1016/j.microc.2007.10.003
  4. Q. Zhao, Q. Wang, D. Wu, X. Fu, T. Jiang and H. Yin, J. Ind. Eng. Chem., 18, 1326 (2012). https://doi.org/10.1016/j.jiec.2012.01.031
  5. J. Niu, S. Ding, L. Zhang, J. Zhao and C. Feng, Chemosphere, 93, 1 (2013). https://doi.org/10.1016/j.chemosphere.2013.04.043
  6. S. Larcher and V. Yargeau, Environ. Pollut., 173, 17 (2013). https://doi.org/10.1016/j.envpol.2012.10.028
  7. N. Nowotny, B. Epp, C. von Sonntag and H. Fahlenkamp, Environ. Sci. Technol., 41, 2050 (2007). https://doi.org/10.1021/es0618595
  8. N. Nakada, H. Shinohara, A. Murata, K. Kiri, S. Managaki, N. Sato and H. Takada, Water Res., 41, 4373 (2007). https://doi.org/10.1016/j.watres.2007.06.038
  9. B. Yang, G.-G. Ying, J.-L. Zhao, S. Liu, L.-J. Zhou and F. Chen, Wat. Res., 46, 2194 (2012). https://doi.org/10.1016/j.watres.2012.01.047
  10. M. Aoki, M. Kurasaki, T. Saito, S. Seki, T. Hosokawa, Y. Takahashi, H. Fujita and T. Iwakura, Life Sci., 74, 2301 (2004). https://doi.org/10.1016/j.lfs.2003.09.066
  11. M. Hawrelak, E. Bennett and C. Metcalfe, Chemosphere, 39, 745 (1999). https://doi.org/10.1016/S0045-6535(99)00010-7
  12. S. Yamazaki, T. Mori, T. Katou, M. Sugihara, A. Saeki and T. Tanimura, J. Photochem. Photobiol. A: Chem., 199, 330 (2008). https://doi.org/10.1016/j.jphotochem.2008.06.017
  13. R. White, S. Jobling, S.A. Hoare, J.P. Sumpter and M.G. Parker, Endocrinology, 135, 175 (1994). https://doi.org/10.1210/endo.135.1.8013351
  14. H. I. Kwak, M.O. Bae, M.H. Lee, Y. S. Lee, B. J. Lee, K. S. Kang, C. H. Chae, H. J. Sung, J. S. Shin, J. H. Kim, W. C. Mar, Y.Y. Sheen and M. H. Cho, Environ. Toxicol. Chem., 20, 787 (2001). https://doi.org/10.1002/etc.5620200414
  15. J. J. Lech, S.K. Lewis and L. Ren, Fundamental Appl. Toxicol., 30, 229 (1996). https://doi.org/10.1006/faat.1996.0060
  16. X. Yang, M. Liu, Z. Wang, Q. Li and Z. Zhang, J. Environ. Sci., 25, 1712 (2013). https://doi.org/10.1016/S1001-0742(12)60209-5
  17. J. L. Zhou, Environ. Sci. Technol., 40, 2225 (2006). https://doi.org/10.1021/es052002v
  18. A.M.R. Ferreira-Leach and E.M. Hill, Marine Environ. Res., 51, 75 (2001). https://doi.org/10.1016/S0141-1136(00)00256-7
  19. R. Gadzala-Kopciuch, A. Filipiak and B. Buszewski, Talanta, 74, 655 (2008). https://doi.org/10.1016/j.talanta.2007.06.028
  20. S.A. Snyder, T. L. Keith, D. A. Verbrugge, E. M. Snyder, T. S. Gross, K. Kannan and J. P. Giesy, Environ. Sci. Technol., 33, 2814 (1999). https://doi.org/10.1021/es981294f
  21. C. Li, X. Z. Li, N. Graham and N.Y. Gao, Wat. Res., 42, 109 (2008). https://doi.org/10.1016/j.watres.2007.07.023
  22. USFDA, U.S. Food and Drug Administration (USFDA) and National Center for Toxicological Research (NCTR), Endocrine Disruptor Knowledge Base (EDKB), (2012), http://www.fda.gov/scienceresearch/bioinformaticstools/endocrinedisruptorknowledgebase/default.htm.
  23. D. Tiwari, J.-K. Yang and S. M. Lee, Env. Eng. Res., 10, 269 (2005). https://doi.org/10.4491/eer.2005.10.6.269
  24. L. Pachuau, S. M. Lee and D. Tiwari, Chem. Eng. J., 230, 141 (2013). https://doi.org/10.1016/j.cej.2013.06.081
  25. J.Q. Jiang, J. Hazard. Mater., 146, 617 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.075
  26. V.K. Sharma, Adv. Environ. Res., 6, 143 (2002). https://doi.org/10.1016/S1093-0191(01)00119-8
  27. N. Graham, C.-C. Jiang, X.-Z. Li, J.-Q. Jiang and J. Ma, Chemosphere, 56, 949 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.060
  28. D. Tiwari, L. Sailo and L. Pachuau, Sep. Purif. Technol., 132, 77 (2014). https://doi.org/10.1016/j.seppur.2014.05.010
  29. J.Q. Jiang, J. Hazard. Mater., 146, 617 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.075
  30. D. Tiwari, H.-U. Kim, B.-J. Choi, S.-M. Lee, O.-H. Kwon, K.-M. Choi and J.-K. Yang, J. Environ. Sci. Health Part A, 42, 803 (2007). https://doi.org/10.1080/10934520701304674
  31. Y. H. Lee, J. Yoon and U.V. Gunten, Environ. Sci. Technol., 39, 8978 (2005). https://doi.org/10.1021/es051198w
  32. J.Q. Jiang, Q. Yin, J.L. Zhou and P. Pearce, Chemosphere, 61, 544 (2005). https://doi.org/10.1016/j.chemosphere.2005.02.029
  33. D. Tiwari, C. Lalhriatpuia and S.-M. Lee, J. Ind. Eng. Chem., 30, 167 (2015). https://doi.org/10.1016/j.jiec.2015.05.018
  34. C. Li, X.Z. Li, N. Graham and N.Y. Gao, Wat. Res., 42, 109 (2008). https://doi.org/10.1016/j.watres.2007.07.023
  35. P. Zhang, G. Zhang, J. Dong, M. Fan and G. Zeng, Sep. Purif. Technol., 84, 46 (2012). https://doi.org/10.1016/j.seppur.2011.06.022
  36. V.K. Sharma, S.K. Mishra and A.K. Ray, Chemosphere, 62, 128 (2006). https://doi.org/10.1016/j.chemosphere.2005.03.095
  37. V.K. Sharma, G.W. L. Ill and F. J. Millero, Chemosphere, 82, 1083 (2011). https://doi.org/10.1016/j.chemosphere.2010.12.053
  38. G.A.K. Anquandah, V.K. Sharma, V.R. Panditi, P.R. Gardinali, H. Kim and M. A. Oturan, Chemosphere, 91, 105 (2013). https://doi.org/10.1016/j.chemosphere.2012.12.001
  39. B. Yang, G.-G. Ying, L.-J. Zhang, L.-J. Zhou, S. Liu and Y.-X. Fang, Wat. Res., 45, 2261 (2011). https://doi.org/10.1016/j.watres.2011.01.022
  40. J.-Q. Jiang, Z. Zhou and O. Pahl, Sep. Purif. Technol., 88, 95 (2012). https://doi.org/10.1016/j.seppur.2011.12.021
  41. Z. Zhang, Y. Feng, Y. Liu, Q. Sun, P. Gao and N. Ren, J. Hazard. Mater., 181, 1127 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.132
  42. Environment Agency UK: Environmental Risk Evaluation Report: 4-tert-octylphenol (2005).
  43. MITI-List: Biodegradation and Bioaccumulation of Existing Chemical Substances under the Chemical Substance Control Law. National Institute of Technology and Evaluation, Japan (2002).
  44. J. F. Garcia-Araya, F. Beltran and A. Aguinaco, J. Chem. Technol. Biotechnol., 85, 798 (2010). https://doi.org/10.1002/jctb.2363
  45. V.K. Sharma, R. Zboril and R.S. Varma, Acc. Chem. Res., 48, 182 (2015). https://doi.org/10.1021/ar5004219
  46. V.K. Sharma, L. Chen and R. Zboril, ACS Sustain. Chem. Eng., 4, 18 (2016). https://doi.org/10.1021/acssuschemeng.5b01202
  47. J.D. Rush, Z. Zhao and B. H. J. Bielski, Free Rad. Res., 24, 187 (1996). https://doi.org/10.3109/10715769609088016
  48. T. Ohta, T. Kamachi, Y. Shiota and K. Yoshizawa, J. Org. Chem., 66, 4122 (2001). https://doi.org/10.1021/jo001193b
  49. V.K. Sharma, D.B. O'Connor and D. Cabelli, Inorg. Chim. Acta, 357, 4587 (2004). https://doi.org/10.1016/j.ica.2004.07.001
  50. V.K. Sharma, S. K. Mishra and N. Nesnas, Environ. Sci. Technol., 40, 7222 (2006). https://doi.org/10.1021/es060351z
  51. T. Kamachi, N. Nakayama and K. Yoshizawa, Bull. Chem. Soc. Japan, 81, 1212 (2008). https://doi.org/10.1246/bcsj.81.1212
  52. N. Noorhasan, B. Patel and V.K. Sharma, Wat. Res., 44, 927 (2010). https://doi.org/10.1016/j.watres.2009.10.003
  53. J. Yang, D. Tiwari, M. Yu, L. Pachuau, W. Kim and S. Lee, Environ. Technol., 31, 791 (2010). https://doi.org/10.1080/09593331003664854

Cited by

  1. Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions vol.23, pp.2, 2018, https://doi.org/10.4491/eer.2017.087