DOI QR코드

DOI QR Code

Computational fluid dynamics on the hydrodynamic characteristics of the conical cap tray

  • Zarei, Taleb (Department of Mechanical Engineering, University of Hormozgan) ;
  • Abedini, Ehsan (Department of Mechanical Engineering, University of Hormozgan) ;
  • Rahimi, Rahbar (Department of Chemical Engineering, University of Sistan and Baluchestan) ;
  • Khorshidi, Jamshid (Department of Mechanical Engineering, University of Hormozgan)
  • Received : 2016.09.22
  • Accepted : 2017.01.02
  • Published : 2017.04.01

Abstract

This paper addresses an investigation on the hydrodynamic behavior of a new type of cap trays called conical cap tray (ConCap tray). A 3-D computational fluid dynamics model was developed to predict the hydrodynamics of the ConCap tray which is operated in the spray regime. The model considers two phase flow of gas and liquid in a VOF-like code framework. The homogeneous multiple size group model (MUSIG model) and shear stress transport (SST) turbulence model were implemented. Detailed insights into the hydrodynamic behavior of the inside of the cones were obtained. The relation between velocity, pressure and cross section area of the flow inside the cone also was formulated. The computational fluid dynamic (CFD) results show that the pressure variation in the cones forces the liquid on the tray to be highly turbulent, which leads to deform the interface to break up. Effect of different riser heights was also studied by CFD simulations. The results show that the riser height has a significant role in the hydrodynamics of the tray, especially in uniform gas distribution in the tray and reducing weeping rates.

Keywords

References

  1. E. Nutter, US Patent, US005360583A (1994).
  2. D. E. Nutter, Chem. Eng. Res. Des., 77, 493 (1999). https://doi.org/10.1205/026387699526511
  3. J. Sun, X. Luo, S. Jiang, W. Wang, H. Lyu, P. Wang and H. Gao, Chem. Eng. Technol., 37, 383 (2014). https://doi.org/10.1002/ceat.201300219
  4. T. Zarei, R. Rahimi and M. Zivdar, Korean J. Chem. Eng., 26, 1213 (2009). https://doi.org/10.1007/s11814-009-0214-7
  5. J. Qian, R. Qi and S. Zhu, Chem. Eng. Res. Des., 84, 155 (2006). https://doi.org/10.1205/cherd.05067
  6. Q. Li, M. Zhang, X. Tang, L. Li and Z. Lei, Chem. Eng. Res. Des., 91, 970 (2013). https://doi.org/10.1016/j.cherd.2013.01.004
  7. G. De Bruyn, H. A. Gangriwala and J.O. Nye, Institution of Chemical Engineers Symposium Series 1, (128), A509-A517 (1992).
  8. J. G. Kunesh, H. Z. Kister, M. J. Lockett and J.R. Fair, Chem. Eng. Prog., 91, 43 (1995).
  9. J. L. Bravo and K.A. Kusters, Chem. Eng. Prog., 96(12), 33 (2000).
  10. N. Burcher, E. Wikstrom, G. Mosca, A. Hausman and P. Wilkinson, Proceedings of Topical Distillation Conference, AIChE, 189 (2007).
  11. D.R. Summers, A. Bernard and W. E.D. Villiers, AIChE Proceedings of Topical Distillation Conference, 189 (2007).
  12. J. Penciak, I. Nieuwoudt and G. Spencer, IChemE Symp., 152, 311 (2006).
  13. P. Wilkinson, E. Vos, G. Konijn, H. Kooijman, G. Mosca and L. Tonon, Chem. Eng. Res. Des., 85, 130 (2007). https://doi.org/10.1205/cherd06103
  14. J.R. Fair, W.R. Trutna and A.F. Seibert, Chem. Eng. Res. Des., 77, 619 (1999). https://doi.org/10.1205/026387699526665
  15. W.R. Trutna, US Patent, 5,695,548 (1997).
  16. Z. P. Xu and D. H. Bielinski, US Patent, 6682633B1 (2004).
  17. P. Xu, B. Nowak and K. Richardson, AIChE Meeting, Spring (2007).
  18. Z. Olujic, M. Jodecke, A. Shilkin, G. Schuch and B. Kaibel, Chem. Eng. Process., 48, 1089 (2009). https://doi.org/10.1016/j.cep.2009.03.004
  19. N. Naziri, R. Zadghaffari and H. Naziri, APCBEE Procedia, 3, 182 (2012). https://doi.org/10.1016/j.apcbee.2012.06.067
  20. N. Yang, R. Zhang, B. Jiang, Z. Li, L. Zhang and Y. Sun, J. Taiwan Inst. Chem. Eng., 53, 6 (2015). https://doi.org/10.1016/j.jtice.2015.02.021
  21. X. Li, H. Cong, X. Gao and H. Li, J. Taiwan Inst. Chem. Eng., 60, 44 (2016). https://doi.org/10.1016/j.jtice.2015.10.019
  22. T. Zarei, R. Rahimi, A. Zarei and M. Zivdar, Chem. Eng. Process., 64, 17 (2013). https://doi.org/10.1016/j.cep.2012.11.010
  23. G. Gesit, K. Nandakumar and K.T. Chuang, AIChE J., 49, 910 (2003). https://doi.org/10.1002/aic.690490410
  24. S. Jiang, H. Gao, J. Sun, Y. Wang and L. Zhang, Chem. Eng. Process., 52, 74 (2012). https://doi.org/10.1016/j.cep.2011.11.009
  25. R. Krishna, J.M. Van Baten, J. Ellenberger, A.P. Higler and R. Taylor, Chem. Eng. Res. Des., 77, 639 (1999). https://doi.org/10.1205/026387699526575
  26. R. Rahimi, A. Zarei, T. Zarei, H. Naziri Firoozsalari and M. Zivdar, In: 50th Distillation & Absorption Conference, 479 (2010).
  27. M.R. Ostadzehi, R. Rahimi, T. Zarei and M. Zivdar, J. Chem. Peroluem Enineering (JCHPE), 47, 39 (2013).
  28. A. Zarei, R. Rahimi, T. Zarei and N. Naziri, In: 50th Distillation & Absorption Conference, 407 (2010).
  29. S. Roshdi, N. Kasiri, S. H. Hashemabadi and J. Ivakpour, Korean J. Chem. Eng., 30, 563 (2013). https://doi.org/10.1007/s11814-012-0166-1
  30. X.G. Li, D. X. Liu, S. M. Xu and H. Li, Chem. Eng. Process., 48, 145 (2009). https://doi.org/10.1016/j.cep.2008.03.001
  31. T. Zarei, M. Farsiani and J. Khorshidi, Korean J. Chem. Eng., 34, 150 (2017). https://doi.org/10.1007/s11814-016-0250-z
  32. A. Zarei, S.H. Hosseini and R. Rahimi, Chem. Eng. Res. Des., 91(12), 2333 (2013). https://doi.org/10.1016/j.cherd.2013.03.006
  33. A. Zarei, S. H. Hosseini and R. Rahimi, J. Taiwan Inst. Chem. Eng., 44, 27 (2013). https://doi.org/10.1016/j.jtice.2012.10.004
  34. D. Ma, M. Liu, Y. Zu and C. Tang, Chem. Eng. Sci., 72, 61 (2012). https://doi.org/10.1016/j.ces.2012.01.013
  35. A. Hoffmann, I. Ausner, J.-U. Repke and G. Wozny, Comput. Chem. Eng., 29(6), 1433 (2005). https://doi.org/10.1016/j.compchemeng.2005.02.004
  36. S. Shojaee, S. H. Hosseini, A. Rafati and G. Ahmadi, Ind. Eng. Chem. Res., 5, 10833 (2011).
  37. A. Alizadehdakhel, M. Rahimi and A. A. Alsairafi, Comput. Chem. Eng., 34(1), 1 (2010). https://doi.org/10.1016/j.compchemeng.2009.07.001
  38. A. Malvin, A. Chan and P. L. Lau, Eng. Lett., 19(1), 24 (2011).
  39. A. Malvin, A. Chan and P. L. Lau, J. Taiwan Inst. Chem. Eng., 45, 1354 (2014). https://doi.org/10.1016/j.jtice.2014.01.002
  40. C.W. Hirt and B.D. Nichols, J. Comput. Phys., 39, 201 (1981). https://doi.org/10.1016/0021-9991(81)90145-5
  41. J. Khorshidi, T. Zarei and H. Davari, Int. J. Industrial Mathematics, 9, 83 (2017).
  42. J.U. Brackbill, D.B. Kothe and C. Zemach, J. Comput. Phys., 100, 335 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y
  43. F.R. Menter, AIAA J., 32, 1598 (1994). https://doi.org/10.2514/3.12149
  44. F.R. Menter and Y. Egorov, IUTAM Symposium on One Hundred Years of Boundary Layer Research, Springer, Netherlands, 279 (2006).
  45. E. Krepper, M. Beyer, T. Frank, D. Lucas and H.M. Prasser, Nucl. Eng. Des., 239(11), 2372 (2009). https://doi.org/10.1016/j.nucengdes.2009.06.015
  46. M. J. Prince and H.W. Blanch, AIChE J., 36, 1485 (1990). https://doi.org/10.1002/aic.690361004
  47. H. Luo and H. F. Svendsen, AIChE J., 42, 1225 (1996). https://doi.org/10.1002/aic.690420505
  48. H. Z. Kister, McGraw Hill (1992).
  49. F.M. White, Fluid Mechanics, McGraw Hill (2011).
  50. D. Fuster, A. Bague, T. Boeck, L. Le Moyne, A. Leboissetier, S. Popinet, P. Ray, R. Scardovelli and S. Zaleski, Int. J. Multiphase Flow, 35, 550 (2009). https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.014
  51. M. J. Lockett, Cambridge University Press: Cambridge, U.K. (1986).

Cited by

  1. Hydrodynamics and design of gas distributor in large-scale amine absorbers using computational fluid dynamics vol.35, pp.5, 2017, https://doi.org/10.1007/s11814-018-0006-z
  2. Study on the flare tip of a gas refinery with various designs of windshields using CFD simulations vol.37, pp.1, 2017, https://doi.org/10.1007/s43153-020-00017-x
  3. Experimental and computational fluid dynamics modeling of a novel tray humidifier column in humidification dehumidification desalination; evaluation of hydrodynamic and heat transfer characteristics vol.234, pp.3, 2020, https://doi.org/10.1177/0954408920916580
  4. Nye tray vs sieve tray: A comparison based on computational fluid dynamics and tray efficiency vol.99, pp.suppl1, 2017, https://doi.org/10.1002/cjce.24008