DOI QR코드

DOI QR Code

Adsorptive removal of methylene blue from aqueous solution using different agricultural wastes as adsorbents

  • Dardouri, Sana (Unite de Recherche Thermique et Thermodynamique de Procedes Industriels, Ecole National d'Ingenieurs Monastir) ;
  • Sghaier, Jalila (Unite de Recherche Thermique et Thermodynamique de Procedes Industriels, Ecole National d'Ingenieurs Monastir)
  • Received : 2016.03.03
  • Accepted : 2017.02.02
  • Published : 2017.04.01

Abstract

The removal of dye from industrial wastewater is one of the most important subjects in water pollution regulation. Successive adsorption/desorption cycles of a basic dye, methylene blue, on internal almond shell, olive stone and rye straw were investigated by using fixed bed column experiments to study the adsorption capacity to remove the MB and adsorbents regeneration efficiency. The adsorption breakthrough curves were predicted by the Thomas model, Yoon Nelson model, and Wolborska model and modified dose-response model by using nonlinear regressive analysis. The adsorption capacity values obtained by this model are compared with the experimental capacity, noting an error of 16%, 27.8% and 18.9% for IAS, OS and RS respectively, but these errors are minimized in the second cycle to 22.98% and 6.06% for OS and RS respectively. The results show that the modified dose response model is more suitable for the description of breakthrough curves for three adsorbents only in the first cycle. The IAS presents the highest adsorption capacity and the best regeneration efficiency. Conversely, the RS presents lower adsorption capacity, whereas is not the hardest to regenerate.

Keywords

References

  1. F. Ramade, Dictionnaire encyclopedique des popullations Ediscience international (2000).
  2. V.K. Gupta, D. Mohan, S. Sharma and M. Sharma, Sep. Sci. Technol., 35(13), 2097 (2000). https://doi.org/10.1081/SS-100102091
  3. A. Malik and E. Grohmann, (Eds.), Springer Science and Business Media (2011).
  4. K.V. Kumar, V. Ramamurthi and S. Sivanesan, J. Colloid Interface Sci., 284(1), 14 (2005). https://doi.org/10.1016/j.jcis.2004.09.063
  5. P. Manoj Kumar Reddy, S. Mahammadunnisa, B. Ramaraju, B. Sreedhar and C. Subrahmanyam, Environ. Sci. Pol. Res., 20, 4111 (2013). https://doi.org/10.1007/s11356-012-1360-8
  6. C. Zhou, Q. Wu, T. Lei and I. I. Negulescu, Chem. Eng. J., 251, 17 (2014). https://doi.org/10.1016/j.cej.2014.04.034
  7. R.F. Gomes, A.C. de Azevedo, Pereira, E.C. Muniz, A.R. Fajardo and F. H. Rodrigues, J. Colloid Interface Sci., 454, 200 (2015). https://doi.org/10.1016/j.jcis.2015.05.026
  8. W. J. Tseng and R.D. Lin, J. Colloid Interface Sci., 428, 95 (2014). https://doi.org/10.1016/j.jcis.2014.04.040
  9. M. Arshadi, A.R. Faraji and M. Mehravar, J. Colloid Interface Sci., 440, 91 (2015). https://doi.org/10.1016/j.jcis.2014.10.040
  10. G.Z. Kyzas and N. K. Lazaridis, J. Colloid Interface Sci., 331(1), 32 (2009). https://doi.org/10.1016/j.jcis.2008.11.003
  11. S. Sadaf, H. N. Bhatti, S. Nausheen and M. Amin, J. Taiwan Inst. Chem. Eng., 47, 160 (2015). https://doi.org/10.1016/j.jtice.2014.10.001
  12. F. Krika and O. E. F. Benlahbib, Desalin. Water Treat, 53(13), 3711 (2015). https://doi.org/10.1080/19443994.2014.995136
  13. M. Shabandokht, E. Binaeian and H.A. Tayebi, Desalin. Water Treatment, 1 (2016).
  14. M.A. Tahir, H.N. Bhatti and M. Iqbal, J. Environ. Chem. Eng., 4(2), 2431 (2016). https://doi.org/10.1016/j.jece.2016.04.020
  15. A. Aguedach, S. Brosillon, J. Morvan and E. K. Lhadi, Appl. Catal. B: Environ., 57(1), 55 (2005). https://doi.org/10.1016/j.apcatb.2004.10.009
  16. M. Ghaedi, A. G. Nasab, S. Khodadoust, M. Rajabi and S. Azizian, J. Indust. Eng. Chem., 20(4), 2317 (2014). https://doi.org/10.1016/j.jiec.2013.10.007
  17. L. Cottet, C. A. P. Almeida, N. Naidek, M. F. Viante, M. C. Lopes and N. A. Debacher, Appl. Clay Sci., 95, 25 (2014). https://doi.org/10.1016/j.clay.2014.03.023
  18. C. Li, H. Zhong, S. Wang, J. Xue and Z. Zhang, J. Indust. Eng. Chem., 23, 344 (2015). https://doi.org/10.1016/j.jiec.2014.08.038
  19. M.A.A. Zaini, M. Zakaria, S.M. Setapar and M.A. Che-Yunus, J. Environ. Chem. Eng., 1(4), 1091 (2013). https://doi.org/10.1016/j.jece.2013.08.026
  20. F. Bouaziz, M. Koubaa, F. Kallel, F. Chaari, D. Driss, R.E. Ghorbel and S. E. Chaabouni, Ind. Crop. Prod., 74, 903 (2015). https://doi.org/10.1016/j.indcrop.2015.06.007
  21. R. Subramaniam and S.K. Ponnusamy, Water Res. Indust., 11, 64 (2015). https://doi.org/10.1016/j.wri.2015.07.002
  22. F. Banat, S. Al-Asheh, R. Al-Ahmad and F. Bni-Khalid, Bioresour. Technol., 98(16), 3017 (2007). https://doi.org/10.1016/j.biortech.2006.10.023
  23. H. Benaissa, J. Taibah University for Sci., 4, 31 (2010). https://doi.org/10.1016/S1658-3655(12)60024-7
  24. A. Ahmad, M. Rafatullah, O. Sulaiman, M. H. Ibrahim and R. Hashim, J. Hazard. Mater., 170(1), 357 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.087
  25. H. Hannachi, M. Msallem, S. B. Elhadj and M. El Gazzah, C. R. Biol., 330(2), 135 (2007). https://doi.org/10.1016/j.crvi.2006.11.005
  26. A. B. Albadarin and C. Mangwandi, J. Environ. Manage., 164, 86 (2015). https://doi.org/10.1016/j.jenvman.2015.08.040
  27. H. Deveci and E. Pehlivan, 301 (2010).
  28. W. Kaminski, E. Tomczak and S. Kuberski, Global J. Adv. Pure Appl. Sci., 1 (2013).
  29. F.D. Ardejani, K. Badii, N.Y. Limaee, S. Z. Shafaei and A.R. Mirhabibi, J. Hazard. Mater., 151(2), 730 (2008). https://doi.org/10.1016/j.jhazmat.2007.06.048
  30. M. Kandah, Chem. Eng. J., 84(3), 543 (2001). https://doi.org/10.1016/S1385-8947(01)00138-3
  31. J. L. Sotelo, G. Ovejero, A. Rodriguez, S. Alvarez and J. Garcia, Chem. Eng. J., 228, 102 (2013). https://doi.org/10.1016/j.cej.2013.04.088
  32. E.D. Woumfo, J. M Siewe and D. Njopwouo, J. Environ. Manage., 151, 450 (2015). https://doi.org/10.1016/j.jenvman.2014.11.029
  33. K.K. Choy, D. C. Ko, C.W. Cheung, J. F. Porter and G. McKay, J. Colloid Interface Sci., 271(2), 284 (2004). https://doi.org/10.1016/j.jcis.2003.12.015
  34. C. J. Geankoplis, Transport Process and Unit Operations, PTR Prentice Hall, New York (1993).
  35. K. Naddafi, R. Nabizadeh, R. Saeedi, A.H. Mahvi, F. Vaezi, K. Yaghmaeian, A. Ghasri and S. Nazmara, J. Hazard. Mater., 147(3), 785 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.122
  36. Y. H. Yoon and J. H. Nelson, The American Industrial Hygiene Association J., 45(8), 509 (1984). https://doi.org/10.1080/15298668491400197
  37. A. Wolborska, Water Res., 23(1), 85 (1989). https://doi.org/10.1016/0043-1354(89)90066-3
  38. R. Han, Y. Wang, X. Zhao, Y. Wang, F. Xie, J. Cheng and M. Tang, Desalination, 245(1), 284 (2009). https://doi.org/10.1016/j.desal.2008.07.013

Cited by

  1. 박스-벤켄 설계법을 이용한 폐감귤박 활성탄에 의한 수용액 중의 항생제 Trimethoprim의 흡착 연구 vol.56, pp.4, 2017, https://doi.org/10.9713/kcer.2018.56.4.568
  2. Continuous dye adsorption and desorption on an invasive macrophyte (Salvinia minima) vol.26, pp.6, 2017, https://doi.org/10.1007/s11356-018-04097-8
  3. A Methodology to Estimate the Sorption Parameters from Batch and Column Tests: The Case Study of Methylene Blue Sorption onto Banana Peels vol.8, pp.11, 2017, https://doi.org/10.3390/pr8111467
  4. Applying hybrid genetic and artificial bee colony algorithms to simulate a bio-treatment of synthetic dye-polluted wastewater using a rhamnolipid biosurfactant vol.299, pp.None, 2021, https://doi.org/10.1016/j.jenvman.2021.113666