DOI QR코드

DOI QR Code

Experimental and numerical predictions of ash particle erosion in SCR monolithic catalysts for coal-fired utility boilers

  • Yu, Cong (School of Energy and Environment, Southeast University) ;
  • Si, Fengqi (School of Energy and Environment, Southeast University) ;
  • Ren, Shaojun (School of Energy and Environment, Southeast University) ;
  • Jiang, Xiaoming (Datang Nanjing Environmental Protection Technology Co., Ltd.)
  • Received : 2016.07.14
  • Accepted : 2017.01.01
  • Published : 2017.05.01

Abstract

Erosion by particles in monolithic selective catalyst reduction (SCR) processes can reduce the operational life of a catalyst and threaten the performance of the SCR system. We present an integrated approach implemented in two stages to predict the erosion condition of SCR processes. First, a 3D computational fluid dynamics (CFD) model was established for a full-sized SCR reactor to obtain information on the flue gas and ash particles at the entrance of the catalyst layer. Second, the detailed inner catalyst structure layers were simulated using MATLAB and a catalyst erosion model was developed, according to the initial and boundary conditions obtained using the CFD models. Relative cold state tests and erosion measurements were conducted to validate the simulation results. The model was applied to investigate the relationship between the reactor installment, the gas-solid flow field and the catalyst erosion. Moreover, a series of retrofit schemes were implemented to confirm that this method can be used in engineering applications.

Keywords

Acknowledgement

Supported by : China Datang Corporation

References

  1. P. Forzatti, Appl. Catal. A: Gen., 222, 221 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  2. K.V. Shah, M.K. Cieplik, C. I. Betrand, W.L. van de Kamp and H. B. Vuthaluru, Fuel Process.Technol., 91, 531 (2010). https://doi.org/10.1016/j.fuproc.2009.12.016
  3. S.A. Benson, J.D. Laumb, C.R. Crocker and J. H. Pavlish, Fuel Process. Technol., 86, 577 (2005). https://doi.org/10.1016/j.fuproc.2004.07.004
  4. J.R. Strege, C. J. Zygarlicke, B.C. Folkedahl and D.P. McCollor, Fuel, 87, 1341 (2008). https://doi.org/10.1016/j.fuel.2007.06.017
  5. C. H. Bartholomew, Appl. Catal. A: Gen., 212, 17 (2001). https://doi.org/10.1016/S0926-860X(00)00843-7
  6. Z. Lei, C. Wen, J. Zhang and B. Chen, Ind. Eng. Chem. Res., 50, 5942 (2011). https://doi.org/10.1021/ie102206x
  7. T. Schwammle, F. Bertsche, A. Hartung, J. Brandenstein, B. Heidel and G. Scheffknecht, Chem. Eng. J., 222, 274 (2013). https://doi.org/10.1016/j.cej.2013.02.057
  8. J. Yao, Z. Zhong and L. Zhu, Chem. Eng. Technol., 38, 283 (2015). https://doi.org/10.1002/ceat.201400127
  9. J. Yang, H. Ma, Y. Yamamoto, J. Yu, G. Xu, Z. Zhang and Y. Suzuki, Chem. Eng. J., 230, 513 (2013). https://doi.org/10.1016/j.cej.2013.06.114
  10. M.B. Gandhi, R. Vuthaluru, H. Vuthaluru, D. French and K. Shah, Appl. Therm. Eng., 42, 90 (2012). https://doi.org/10.1016/j.applthermaleng.2012.03.015
  11. G.C. Pereira, F. J. de Souza and D. A. de Moro Martins, Powder Technol., 261, 105 (2014). https://doi.org/10.1016/j.powtec.2014.04.033
  12. K. P. Schade, H. J. Erdmann, T. Hadrich, H. Schneider, T. Frank and K. Bernert, Powder Technol., 125, 242 (2002). https://doi.org/10.1016/S0032-5910(01)00512-5
  13. Y. I. Oka, K. Okamura and T. Yoshida, Wear, 259, 95 (2005). https://doi.org/10.1016/j.wear.2005.01.039
  14. Y. I. Oka and T. Yoshida, Wear, 259, 102 (2005). https://doi.org/10.1016/j.wear.2005.01.040
  15. R. Nagarajan, B. Ambedkar, S. Gowrisankar and S. Somasundaram, Wear, 267, 122 (2009). https://doi.org/10.1016/j.wear.2008.12.057
  16. Z. Lin, X. Ruan, Z. Zhu and X. Fu, Powder Technol., 254, 150 (2014). https://doi.org/10.1016/j.powtec.2014.01.002
  17. Mansouri, H. Arabnejad, S.A. Shirazi and B. S. McLaury, Wear, 332, 1090 (2015).
  18. K.G. Budinski, Wear, 203, 302 (1997).
  19. L. Gan, S. Lei, J. Yu, H. Ma, Y. Yamamoto, Y. Suzuki and Z. Zhang, Front. Environ. Sci. Eng., 9, 979 (2015). https://doi.org/10.1007/s11783-015-0824-8
  20. M. Parsi, K. Najmi, F. Najafifard, S. Hassani, B. S. McLaury and S. A. Shirazi, J. Nat. Gas Sci. Eng., 21, 850 (2014). https://doi.org/10.1016/j.jngse.2014.10.001
  21. H. J. Chae, S.T. Choo, H. Choi, I. S. Nam, H. S. Yang and S. L. Song, Ind. Eng. Chem. Res., 39, 1159 (2000). https://doi.org/10.1021/ie9907270
  22. J.M. Cho, J.W. Choi, S. H. Hong, K. C. Kim, J. H. Na and J.Y. Lee, Korean J. Chem. Eng., 23, 43 (2006). https://doi.org/10.1007/BF02705691
  23. Y. Xu, Y. Zhang, J. Wang and J. Yuan, Comput. Chem. Eng., 49, 50 (2013). https://doi.org/10.1016/j.compchemeng.2012.09.014
  24. Y. Xu, Y. Zhang, F. Liu, W. Shi and J. Yuan, Comput. Chem. Eng., 69, 119 (2014). https://doi.org/10.1016/j.compchemeng.2014.07.012
  25. H. C. Park, H. S. Choi and Y. S. Choi, J. Comput. Fluids Eng., 16, 66 (2011).
  26. B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng., 3, 269 (1974). https://doi.org/10.1016/0045-7825(74)90029-2
  27. A. Li and G. Ahmadi, Aerosol. Sci. Technol., 16, 209 (1992). https://doi.org/10.1080/02786829208959550
  28. M. Sommerfeld and N. Huber, Int. J. Multiphase Flow, 25, 1457 (1999). https://doi.org/10.1016/S0301-9322(99)00047-6
  29. B. Kuan, N. Rea and M. P.Schwarz, Powder Technol., 179, 65 (2007). https://doi.org/10.1016/j.powtec.2006.11.005
  30. M. Mezhericher, T. Brosh and A. Levy, Particul. Sci. Technol., 29, 197 (2011). https://doi.org/10.1080/02726351003792914

Cited by

  1. Numerical simulation of fluid flow and mixing process in a SCR denitration system vol.397, pp.None, 2018, https://doi.org/10.1088/1757-899x/397/1/012100
  2. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2017, https://doi.org/10.5714/cl.2018.28.081
  3. Rotation-Assisted Hydrothermal Synthesis of Thermally Stable Multiwalled Titanate Nanotubes and Their Application to Selective Catalytic Reduction of NO with NH3 vol.10, pp.49, 2017, https://doi.org/10.1021/acsami.8b14589
  4. Numerical and Experimental Investigations on Reducing Particle Accumulation for SCR-deNOx Facilities vol.9, pp.19, 2017, https://doi.org/10.3390/app9194158