DOI QR코드

DOI QR Code

NH3-SCR performance and characterization over magnetic iron-magnesium mixed oxide catalysts

  • Xu, Liting (School of Energy and Power Engineering, Shandong University) ;
  • Niu, Shengli (School of Energy and Power Engineering, Shandong University) ;
  • Lu, Chunmei (School of Energy and Power Engineering, Shandong University) ;
  • Wang, Dong (State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University) ;
  • Zhang, Kang (School of Energy and Power Engineering, Shandong University) ;
  • Li, Jing (School of Chemistry and Chemical Engineering, Shandong University)
  • Received : 2016.07.14
  • Accepted : 2017.02.17
  • Published : 2017.05.01

Abstract

A series of magnetic iron-magnesium mixed oxide catalysts ($Fe_{1-x}Mg_xO_z$) were synthesized via a novel co-precipitation method with microwave thermal treatment, and their activity in $NH_3$-SCR was tested on a quartz fixedbed reactor. Physical and chemical properties of the catalysts were characterized by X-ray diffraction (XRD), $N_2$-adsorption-desorption, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). $Fe_{0.8}Mg_{0.2}O_z$ with excellent $N_2$ selectivity and resistance to $SO_2$ and $H_2O$ was validated as the proper SCR catalyst, with the maximum $NO_x$ conversion of 99.1% fulfilled at $325^{\circ}C$. Activity was strongly influenced by the ${\gamma}-Fe_2O_3$ crystalline phase, and magnesium existed in an amorphous phase and interacted with iron oxide intensively to form solid solution in favor of SCR. For $Fe_{0.8}Mg_{0.2}O_z$ catalyst, optimum pore diameter distribution, appropriate surface area, pore volume and abundant lattice oxygen on the surface could be guaranteed, which is good for the diffusion process and enhances the activity.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Shandong University

References

  1. J. Yang, H.T. Ma, Y. Yamamoto, J. Yu, G.W. Xu, Z. G. Zhang and Y. Suzuki, Chem. Eng. J., 230, 513 (2013). https://doi.org/10.1016/j.cej.2013.06.114
  2. Y. B. Jo, J. S. Cha, J.H. Ko, M. C. Shin, S. H. Park, J. K. Jeon, S. S. Kim and Y.K. Park, KJCE, 28, 106 (2011).
  3. Y. G. Chen, Z. Wang and Z. C. Guo, Chin J. Process Eng., 7, 632 (2007).
  4. P.W. Seo, S. S. Kim and S. C. Hong, KJCE, 27, 1220 (2010).
  5. F.Y. Gao, X. L. Tang, H. H. Yi, S. Z. Zhao, T.T. Zhang, D. Li and D. Ma, Bull. Sci. Technol., 26, 2560 (2014).
  6. L. Y. Xiong, Q. Zhong, Q. Q. Chen and S. L. Zhang, KJCH, 30, 836 (2013).
  7. X. Gao, X. J. Lu and M. H. Hu, J. Jianghan Univ., 02, 12 (2014).
  8. F. Cao, S. Su, J. Xiang, P.Y. Wang, S. Hu, L. S. Sun and A.C. Zhang, Fuel, 139, 232 (2015). https://doi.org/10.1016/j.fuel.2014.08.060
  9. M. Casanova, J. Llorca, A. Sagar, K. Schermanz and A. Trovarelli, Catal. Today, 241, 159 (2015). https://doi.org/10.1016/j.cattod.2014.03.051
  10. R. Foo, T. Vazhnova, D.B. Luckyanov, P. Millington, J. collier, R. Rajaram and S. Golunski, Appl. Catal. B-Environ., 162, 174 (2015). https://doi.org/10.1016/j.apcatb.2014.06.034
  11. G. H. Yao, K.T. Gui and F. Wang, Chem. Eng. Technol., 33, 1093 (2010). https://doi.org/10.1002/ceat.201000015
  12. D. Wang, J. K. Wu, S. L. Niu, C. M. Lu, L.T. Xu, H.W. Yu and J. Li, J. Fuel Chem. Technol., 43, 876 (2015).
  13. X. L. Zhang, D. Wang, J. S. Peng, C. M. Lu and L.T. Xu, J. Fuel Chem. Technol., 43, 243 (2015).
  14. Y. Gao, X. M. Hu, P. J. Liu, Y. Li, Y. Zhang, Y. Liu and Y.B. Guo, Chin J. Environ. Eng., 2, 806 (2008).
  15. R.Y. Lai, X. L. Tang, H. H. Yi, K. Li, P. Wang and X. Sun, Mod. Chem. Ind., 34, 76 (2014).
  16. S. L. Zhang, H.Y. Li and Q. Zhong, Appl. Catal. A-Gen., 435-436, 156 (2012). https://doi.org/10.1016/j.apcata.2012.05.049
  17. Z. Cao, Y. Huang, L. L. Peng and J. G Li, J. Fuel Chem. Technol., 40, 456 (2012).
  18. J.S. Chen, X.S. Shang, J.P. Zhao, F.W. Zhang, Y. Xu and J.R. Li, Electric. Power., 43, 64 (2010).
  19. S. Wang, G. H. Yao and K.T. Gui, Prog. Chin. Soc. Electrial Eng., 29, 47 (2009).
  20. L. Chen, J. H. Li and M. F. Ge, Environ. Sci. Technol., 44, 9590 (2011).
  21. L. Chen, J. H. Li, M. F. Ge and R. H. Zhu, Catal. Today, 153, 77 (2010). https://doi.org/10.1016/j.cattod.2010.01.062
  22. G. S. Qi and R.T. Yang, J. Catal., 217, 434 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2

Cited by

  1. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2017, https://doi.org/10.5714/cl.2018.28.081
  2. Regeneration of commercial SCR catalyst deactivated by arsenic poisoning in coal-fired power plants vol.36, pp.3, 2017, https://doi.org/10.1007/s11814-018-0227-9
  3. Insights over Titanium Modified FeMgOx Catalysts for Selective Catalytic Reduction of NOx with NH3: Influence of Precursors and Crystalline Structures vol.9, pp.6, 2019, https://doi.org/10.3390/catal9060560
  4. Acid-pretreated red mud for selective catalytic reduction of NO x with NH3: Insights into inhibition mechanism of binders vol.376, pp.None, 2017, https://doi.org/10.1016/j.cattod.2020.05.036
  5. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temper vol.376, pp.None, 2017, https://doi.org/10.1016/j.cattod.2020.07.042