DOI QR코드

DOI QR Code

Technology development for the reduction of NOx in flue gas from a burner-type vaporizer and its application

  • Son, Jeongeun (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • Yang, Huicheon (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Geonjoong (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • Hwang, Sungwon (Graduate School of Chemistry and Chemical Engineering, Inha University) ;
  • You, Hyunseok (New Energy Technology Center, KOGAS Research Institute)
  • Received : 2016.11.25
  • Accepted : 2017.02.06
  • Published : 2017.06.01

Abstract

We developed a modified process of a submerged combustion vaporizer (SMV) to remove nitric oxides (NOx) efficiently from flue gas of the SMV at liquefied natural gas (LNG) terminals. For this, excess oxygen is injected into exhaust gas that contains NOx from SMV burner. Then, the mixed gas spreads into a hydrogen peroxide solution or water bath. We initially performed experiments of the modified system to estimate the effect of various process variables (temperature, excess $O_2$ concentration, pH of water, residence time of flue gas in water tank, and $H_2O_2$ concentration) on NOx conversion, and developed a mathematical model of the system based on the experiment results. Lastly, we confirmed higher performance of the modified system and validated the feasibility for its field application.

Keywords

Acknowledgement

Supported by : Korea Gas Corporation, Ministry of Trade

References

  1. NIER, National Air Pollutants Emission 2012, 11-1480523-002293-01, Ministry of Environment, Korea (2012).
  2. Z. Guan, J. Ren, D. Chen, L. Hong, F. Li, D. Wang, Y. Ouyang and Y. Gao, Korean J. Chem. Eng., 33, 3102 (2016). https://doi.org/10.1007/s11814-016-0179-2
  3. S. Egashira, Kobelco Technol. Rev., 32, 64 (2013).
  4. K. Lee, Appl. Chem. Eng., 21, 243 (2010).
  5. M.E. Morrison, R. G. Rinker and W. H. Corcoran, Ind. Eng. Chem. Fundam., 5, 175 (1966). https://doi.org/10.1021/i160018a004
  6. H. Tsukahara, T. Ishida and M. Mayumi., Nitric Oxide, 3, 191 (1999). https://doi.org/10.1006/niox.1999.0232
  7. M. Bodenstein and L. Wachenheim, Z. Elektrochem., 24, 183 (1918).
  8. C.F.H. Tipper and R.K. Williams, Trans. Faraday Soc., 57, 79 (1961). https://doi.org/10.1039/TF9615700079
  9. J. C. Treacy and F. Daniels, J. Am. Chem. Soc., 77, 2033 (1955). https://doi.org/10.1021/ja01613a001
  10. J. Mahenc, G. Clot and R. Bes, Bull. Soc. Chim. Fr., 5, 1578 (1971).
  11. I.C. Hisatsune and L. Zafonte, J. Phys. Chem., 73, 2980 (1969). https://doi.org/10.1021/j100843a034
  12. J. Olbregts, Int. J. Chem. Kinet., 17, 835 (1985). https://doi.org/10.1002/kin.550170805
  13. J.H. Smith, J. Am. Chem. Soc., 65, 74 (1943). https://doi.org/10.1021/ja01241a025
  14. R. Cueto and W. A. Pryor, Vib. Spectrosc., 7, 97 (1994). https://doi.org/10.1016/0924-2031(94)85045-3
  15. F. B. Brown and R. H. Crist, J. Chem. Phys., 9, 840 (1941). https://doi.org/10.1063/1.1750854
  16. J.D. Greig and P.G. Hall, Trans. Faraday. Soc., 63, 655 (1967). https://doi.org/10.1039/tf9676300655
  17. J.D. Greig and P.G. Hall, Trans. Faraday. Soc., 62, 652 (1966). https://doi.org/10.1039/tf9666200652
  18. A. Aida, K. Miyamoto, S. Saito, T. Nakano, M. Nishimura, Y. Kawakami, Y. Omori, S. Ando, T. Ichida and Y. Ishibe, Nihon Kyobu Shikkan Gakkai Zasshi, 33, 306 (1995).
  19. D. H. Stedman and H. Niki, J. Phys. Chem., 77, 2604 (1973). https://doi.org/10.1021/j100640a005
  20. J. J. Bufalini and E.R. Stephens, Int. J. Air Water. Poll., 9, 123 (1965).
  21. W.A. Glasson and C. S. Tuesday, J. Am. Chem. Soc., 85, 2901 (1963). https://doi.org/10.1021/ja00902a008
  22. V. L. Pogrebnaya, A. P. Usov, A.V. Baranov, A. I. Nesterenko and P. I. Bez'yazychnyi, Zh. Prikl. Khim., 48, 954 (1975).
  23. R. S. Lewis and W.M. Deen, Chem. Res. Toxicol., 7, 568 (1994). https://doi.org/10.1021/tx00040a013
  24. D.A. Wink, J. F. Darbyshire, R.W. Nims, J. E. Saavedra and P.C. Ford, Chem. Res. Toxicol., 6, 23 (1993). https://doi.org/10.1021/tx00031a003
  25. H.H. Awad and D.M. Stanbury, Int. J. Chem. Kinet., 25, 375 (1993). https://doi.org/10.1002/kin.550250506
  26. X. L. Long, Z. L. Xin, M. B. Chen, W. Li, W.D. Xiao and W. K. Yuan, Sep. Purif. Technol., 58, 328 (2008). https://doi.org/10.1016/j.seppur.2007.05.004
  27. D. S. Jin, B.R. Deshwal, Y. S. Park and H. K. Lee, J. Hazard. Mater. B, 135, 412 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.001
  28. J.M. Kasper, C. A. Clausen III and C.D. Cooper, J. Air Waste Manage. Assoc., 46, 127 (1996). https://doi.org/10.1080/10473289.1996.10467444
  29. A.D. Bhanarkar, R.K. Gupta, R. B. Biniwale and S.M. Tamhane, Int. J. Environ. Sci. Technol., 11, 1537 (2014). https://doi.org/10.1007/s13762-013-0295-z
  30. D. Thomas and J. Vanderschuren, Ind. Eng. Chem. Res., 36, 3315 (1997). https://doi.org/10.1021/ie960436g
  31. D. Thomas and J. Vanderschuren, Sep. Purif. Technol., 18, 37 (1999). https://doi.org/10.1016/S1383-5866(99)00049-0
  32. S.E. Schwartz and W. H. White, Adv. Environ. Sci. Eng., 4, 1 (1981).
  33. S. Park, Y. Lee, G. Kim and S. Hwang, Korean J. Chem. Eng., 33, 3417 (2016). https://doi.org/10.1007/s11814-016-0206-3
  34. J. Kuropka, Environ. Prot. Eng., 37, 13 (2011).
  35. M. Pires, M. J. Rossi and D. S. Ross, Int. J. Chem. Kinet., 26, 1207 (1994). https://doi.org/10.1002/kin.550261208
  36. K.K. Baveja, D. S. Rao and M. K. Sarkar, J. Chem. Eng. Jpn., 12, 322 (1979). https://doi.org/10.1252/jcej.12.322
  37. D. Thomas and J. Vanderschuren, Chem. Eng. Sci., 51, 2649 (1996). https://doi.org/10.1016/0009-2509(96)00131-5
  38. T. Wang and J. Wang, Chem. Eng. Sci., 62, 7107 (2007). https://doi.org/10.1016/j.ces.2007.08.033
  39. H. Lee, S. Lee, S. Hwang and D. Jin, Korean Chem. Eng. Res., 54, 340 (2016). https://doi.org/10.9713/kcer.2016.54.3.340

Cited by

  1. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2017, https://doi.org/10.5714/cl.2018.28.081
  2. Combustion characteristic study with a flue gas internal and external double recirculation burner vol.162, pp.None, 2017, https://doi.org/10.1016/j.cep.2021.108345