DOI QR코드

DOI QR Code

Study on adsorption characteristics of biochar on heavy metals in soil

  • Wang, Hong (School of Energy & Mechanical Engineering, Nanjing Normal University) ;
  • Xia, Wen (School of Energy & Mechanical Engineering, Nanjing Normal University) ;
  • Lu, Ping (School of Energy & Mechanical Engineering, Nanjing Normal University)
  • Received : 2016.07.15
  • Accepted : 2017.02.27
  • Published : 2017.06.01

Abstract

Three kinds of biochars (called poplar branch biochar (PBC), water hyacinth biochar (WHC), and corn straw biochar (CSC)) were prepared in a fixed-bed pyrolyzer at different pyrolysis temperature of $300-700^{\circ}C$. The effects of biochar species, pyrolysis temperature and biochar addition on adsorption characteristics of typical heavy metals (HMs) of Pb and Zn in vegetable soil (collected from lead-zinc-silver mining area, Nanjing, China) were investigated. The obtained results indicate that WHC presents the best adsorption ability at the same experimental conditions, whose adsorption efficiency on HMs of Zn and Pb is 21.83% and 44.57%, and the relative adsorption capacity of Zn and Pb is $227.65{\mu}g/g$and $363.76{\mu}g/g$, respectively. The adsorption efficiency of biochar on HMs of Zn and Pb in soil increases gradually with the increasing of pyrolysis temperature. The increasing of biochar addition is beneficial to increase adsorption efficiency of soil HMs, but unhelpful for adsorption capacity.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. T. S. Rotting, M. Mercado, M. E. Garcia and J. Quintanilla, Int. J. Environ. Sci. Technol., 11, 935 (2014). https://doi.org/10.1007/s13762-013-0313-1
  2. L. C. A. Melo, A. P. Puga, A.R. Coscione, L. Beesley, C. A. Abreu and O. A. Camargo, J. Soils Sediments, 16, 226 (2016). https://doi.org/10.1007/s11368-015-1199-y
  3. R. Clemente, T. Pardo, P. Madejon, E. Madejon and M.P. Bernal, Food Res. International, 73, 176 (2015). https://doi.org/10.1016/j.foodres.2015.03.040
  4. A. H. Lone, G.R. Najar, M. A. Ganie, J. A. Sofi and T. Ali, Pedosphere, 25, 639 (2015). https://doi.org/10.1016/S1002-0160(15)30045-X
  5. T.S. Colla, R. Andreazza, F. Bucker, M.M. Souza, L. Tramontini, G.R. Prado, A. P. G. Frazzon, F. A.O. Camargo and F. M. Bento, Environ. Sci. Pollut. Res., 21, 2592 (2014). https://doi.org/10.1007/s11356-013-2139-2
  6. R. Xu and A. Zhao, Environ. Sci. Pollut. Res., 20, 8491 (2013). https://doi.org/10.1007/s11356-013-1769-8
  7. K. Lu, X. Yang, J. Shen, B. Robinson, H. Huang, D. Liu, N. Bolan, J. Pei and H. Wang, Agriculture, Ecosystems and Environ., 191, 124 (2014). https://doi.org/10.1016/j.agee.2014.04.010
  8. W. Ding, X. Dong, I.M. Ime, B. Gao and L.Q. Ma, Chemosphere, 105, 68 (2014). https://doi.org/10.1016/j.chemosphere.2013.12.042
  9. M. Li, L. Du, Y. Zhang and Y. Gao, J. Soil Water Conserv., 27, 261 (2013).
  10. L. Beesley, E. Moreno-Jimenez, J. L. Gomez-Eyles, E. Harris, B. Robinson and T. Sizmur, Environ. Pollut., 159, 3269 (2011). https://doi.org/10.1016/j.envpol.2011.07.023
  11. D. Li, W. C. Hockaday, C.A. Masiello and P. J. J. Alvarez, Soil Biology Biochem., 43, 1732 (2011). https://doi.org/10.1016/j.soilbio.2011.04.019
  12. J. Liu, X. Yang, K. Lu, X. Zhang, H. Huang and H. Wang, Acta Scientiae Circumstantiae, 35, 3679 (2015).
  13. T. Jiang, J. Jiang, R. Xu and Z. Li, Chemosphere, 89, 249 (2012). https://doi.org/10.1016/j.chemosphere.2012.04.028
  14. K. Sun, B. Gao, K. S. Ro, J. M. Novak, Z. Wang, S. Herbert and B. Xing, Environ. Pollut., 163, 167 (2012). https://doi.org/10.1016/j.envpol.2011.12.015
  15. Y. Song, F. Wang, Y. Bian, F.O. Kengara, M. Jia, Z. Xie and X. Jiang, J. Hazard. Mater., 217, 391 (2012).
  16. D.H. Moon, J. Park, Y. Chang, Y. S. Ok, S. S. Lee, M. Ahmad, A. Koutsospyros, J. Park and K. Baek, Environ. Sci. Pollut. Res., 20, 8464 (2013). https://doi.org/10.1007/s11356-013-1964-7
  17. D. Houben, L. Evrard and P. Sonnet, Biomass Bioenerg, 57, 196 (2013). https://doi.org/10.1016/j.biombioe.2013.07.019
  18. J. H. Choi, S. Kim, D. J. Suh, E. Jang, K. Min and H.C. Woo, Korean J. Chem. Eng., 33, 2691 (2016). https://doi.org/10.1007/s11814-016-0131-5
  19. T. Shu Tong, P. Lu and N. He, Bioresour. Technol., 136, 182 (2013). https://doi.org/10.1016/j.biortech.2013.02.087
  20. F. Li, R. Bade, S. Oh and W. S. Shin, Korean J. Chem. Eng., 29, 1362 (2012). https://doi.org/10.1007/s11814-012-0015-2
  21. China MEP. GB15618-2008: Environmental quality standards for soils, Beijing, China (2008).
  22. J. H. Park, S.O. Yong and S. H. Kim, Chemosphere, 142 (2016).
  23. X. Chen, G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. McBride and A. G. Hay, Bioresour. Technol., 102, 8877 (2011). https://doi.org/10.1016/j.biortech.2011.06.078
  24. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee and Y. S. Ok, Chemosphere, 99, 19 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
  25. W. Ding, Q. Zhu, X. Zeng and X. Tian, Sci. Technol. Review, 29, 22 (2011).
  26. G. Li, W. Zhu, L. Zhu and X. Chai, Korean J. Chem. Eng., 33, 2215 (2016). https://doi.org/10.1007/s11814-016-0067-9
  27. L. Ni and R. Weng, J. Environ. Eng. Technol., 5, 59 (2015).

Cited by

  1. Preparation of corn straw based spongy aerogel for spillage oil capture vol.35, pp.5, 2017, https://doi.org/10.1007/s11814-018-0010-3
  2. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar vol.11, pp.16, 2018, https://doi.org/10.1007/s12517-018-3790-1
  3. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2017, https://doi.org/10.5714/cl.2018.28.081
  4. Microwave Pyrolysis with Steam Activation in Producing Activated Carbon for Removal of Herbicides in Agricultural Surface Water vol.58, pp.2, 2019, https://doi.org/10.1021/acs.iecr.8b03319
  5. Acetaldehyde removal and increased H2/CO gas yield from biomass gasification over metal-loaded Kraft lignin char catalyst vol.232, pp.None, 2019, https://doi.org/10.1016/j.jenvman.2018.11.054
  6. Fire-Induced Changes in Soil and Implications on Soil Sorption Capacity and Remediation Methods vol.9, pp.17, 2017, https://doi.org/10.3390/app9173447
  7. Potential of Novel Biochars Produced from Invasive Aquatic Species Outside Food Chain in Removing Ammonium Nitrogen: Comparison with Conventional Biochars and Clinoptilolite vol.11, pp.24, 2017, https://doi.org/10.3390/su11247136
  8. Effect of different pyrolysis temperatures on physico-chemical characteristics and lead(ii) removal of biochar derived from chicken manure vol.10, pp.7, 2020, https://doi.org/10.1039/c9ra08199b
  9. De-ashed biochar enhances nitrogen retention in manured soil and changes soil microbial dynamics vol.378, pp.None, 2017, https://doi.org/10.1016/j.geoderma.2020.114589
  10. A new upgrading platform for livestock lignocellulosic waste into syngas using CO2-assisted thermo-chemical process vol.236, pp.None, 2017, https://doi.org/10.1016/j.enconman.2021.114084
  11. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management vol.200, pp.None, 2017, https://doi.org/10.1016/j.envres.2021.111758
  12. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar vol.801, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.149623
  13. Effects of different feedstocks-based biochar on soil remediation: A review vol.294, pp.None, 2017, https://doi.org/10.1016/j.envpol.2021.118655
  14. Microwave-assisted catalytic pyrolysis of refuse-derived fuel (RDF) to improve pyrolysis performance and biochar properties vol.227, pp.None, 2017, https://doi.org/10.1016/j.fuproc.2021.107129
  15. Biochar promotes arsenic (As) immobilization in contaminated soils and alleviates the As-toxicity in soybean (Glycine max (L.) Merr.) vol.292, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2021.133407