DOI QR코드

DOI QR Code

Upgrading of pyrolysis bio-oil using WO3/ZrO2 and Amberlyst catalysts: Evaluation of acid number and viscosity

  • Lee, Yejin (School of Environmental Engineering, University of Seoul) ;
  • Shafaghat, Hoda (School of Environmental Engineering, University of Seoul) ;
  • Kim, Jae-kon (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Jung, Sang-Chul (Biomass and Waste Energy Laboratory, Korea Institute of Energy Research) ;
  • Lee, In-Gu (Department of Environmental Engineering, Sunchon National University) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul)
  • Received : 2017.03.15
  • Accepted : 2017.05.01
  • Published : 2017.08.01

Abstract

Tungstated zirconia ($WO_3/ZrO_2$ with $WO_3$ loadings of 9.9 (WZ9.9), 15.5 (WZ15.5), and 15.7 wt% (WZ15.7)) and Amberlyst (15, 35, 36, 39 and 45) catalysts were employed to upgrade pyrolysis bio-oil of acacia sawdust through an esterification reaction using methanol at atmospheric pressure and room temperature or $80^{\circ}C$. The upgrading efficiency was evaluated by measuring the total acid number (TAN) and viscosity. The viscosity and TAN of the resulting upgraded bio-oil were found to be dependent on the calcination temperature of the $WO_3/ZrO_2$ catalysts. At room temperature, the largest decrease in viscosity and TAN of the bio-oil and methanol mixture was obtained using WZ9.9 tungstated zirconia calcined at $900^{\circ}C$. An increase in reaction temperature to $80^{\circ}C$ improved the flowability and TAN of the methanol-added bio-oil using WZ9.9 activated at $900^{\circ}C$. The product distribution of the bio-oil upgraded using methanol revealed esterification to be the dominant reaction pathway under the reaction conditions of this study. When the ether extracted bio-oil was upgraded at $80^{\circ}C$ using methanol over catalysts, the Amberlyst catalysts were found more effective than tungstated zirconia catalysts in enhancing the esterification reaction and reducing TAN.

Keywords

Acknowledgement

Supported by : NST (National Research Council of Science & Technology), Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. H. B. Kim and J. H. Park, Int. J. Urban Sci., 18, 373 (2014). https://doi.org/10.1080/12265934.2014.923780
  2. D. Park, N. S. Kim, H. Park and K. Kim, Int. J. Urban Sci., 16, 85 (2012). https://doi.org/10.1080/12265934.2012.668322
  3. S. S. Kim, H.V. Ly, B.H. Chun, J. H. Ko and J. Kim, Korean J. Chem. Eng., 33, 3128 (2016). https://doi.org/10.1007/s11814-016-0143-1
  4. Y.M. Kim, B.S. Kim, K.S. Chea, T.S. Jo, S. Kim and Y.K. Park, Appl. Chem. Eng., 27, 407 (2016). https://doi.org/10.14478/ace.2016.1051
  5. N. Lohitharn and B.H. Shanks, Catal. Commun., 11, 96 (2009). https://doi.org/10.1016/j.catcom.2009.09.002
  6. X. Li, R. Gunawan, C. Lievens, Y. Wang, D. Mourant, S. Wang, H. Wu, M. Garcia-Perez and C. Z. Li, Fuel, 90, 2530 (2011). https://doi.org/10.1016/j.fuel.2011.03.025
  7. S. H. Park, H. J. Cho, C. Ryu and Y. K. Park, J. Ind. Eng. Chem., 36, 314 (2016). https://doi.org/10.1016/j.jiec.2016.02.021
  8. Y. Wei, H. Lei, L. Wang, L. Zhu, X. Zhang, Y. Liu, S. Chen and B. Ahring, Energy Fuels, 28, 1207 (2014). https://doi.org/10.1021/ef402490s
  9. H. Lee, Y. M. Kim, I. G. Lee, J. K. Jeon, S. C. Jung, J.D. Chung, W. G. Choi and Y. K. Park, Korean J. Chem. Eng., 33, 3299 (2016). https://doi.org/10.1007/s11814-016-0214-3
  10. E.H. Lee, R. S. Park, H. Kim, S. H. Park, S. C. Jung, J. K. Jeon, S. C. Kim and Y.K. Park, J. Ind. Eng. Chem., 37, 18 (2016). https://doi.org/10.1016/j.jiec.2016.03.019
  11. Z. Yang, A. Kumar and R. L. Huhnke, Renew. Sust. Energy Rev., 50, 859 (2015). https://doi.org/10.1016/j.rser.2015.05.025
  12. J. H. Choi, S. S. Kim, D. J. Suh, E. J. Jang, K. I. Min and H.C. Woo, Korean J. Chem. Eng., 33, 2691 (2016). https://doi.org/10.1007/s11814-016-0131-5
  13. H.C. Park, H.S. Choi and J.E. Lee, Korean J. Chem. Eng., 33, 1159 (2016). https://doi.org/10.1007/s11814-015-0256-y
  14. D. Mohan, C.U. Pittman, Jr. and P. H. Steele, Energy Fuels, 20, 848 (2006). https://doi.org/10.1021/ef0502397
  15. G.W. Huber, S. Iborra and A. Corma, Chem. Rev., 106, 4044 (2006). https://doi.org/10.1021/cr068360d
  16. S. Xiu and A. Shahbazi, Renew. Sust. Energy Rev., 16, 4406 (2012). https://doi.org/10.1016/j.rser.2012.04.028
  17. Z. Zhang, S. Sui, F. Wang, Q. Wang and C.U. Pittman, Jr., Energies, 6, 4531 (2013). https://doi.org/10.3390/en6094531
  18. X. Jiang, Z. Zhong, N. Ellis and Q. Wang, Chem. Eng. Technol., 34, 727 (2011). https://doi.org/10.1002/ceat.201000441
  19. D. Chen, J. Zhou, Q. Zhang and X. Zhu, Renew. Sust. Energy Rev., 40, 69 (2014). https://doi.org/10.1016/j.rser.2014.07.159
  20. F. Wenting, L. Ronghou, Z. Weiqi, M. Yuanfei and Y. Renzhan, Int. J. Agric. Biol. Eng., 7, 83 (2014).
  21. L. Ciddor, J. A. Bennett, J. A. Hunns, K. Wilson and A. F. Lee, J. Chem. Technol. Biotechol., 90, 780 (2015). https://doi.org/10.1002/jctb.4662
  22. X. Zhang, Q. Zhang, T. Wang, B. Li, Y. Xu and L. Ma, Fuel, 179, 312 (2016). https://doi.org/10.1016/j.fuel.2016.03.103
  23. O. Ilgen, Fuel Process. Technol., 124, 134 (2014). https://doi.org/10.1016/j.fuproc.2014.02.023
  24. P. Weerachanchai, C. Tangsathitkulchai and M. Tangsathitkulchai, Korean J. Chem. Eng., 29, 182 (2012). https://doi.org/10.1007/s11814-011-0161-y
  25. M.M.R. Talukder, J. C. Wu, S. K. Lau, L. C. Cui, G. Shimin and A. Lim, Energy Fuels, 23, 1 (2009). https://doi.org/10.1021/ef8006245

Cited by

  1. Hydrodeoxygenation of Aqueous-Phase Catalytic Pyrolysis Oil to Liquid Hydrocarbons Using Multifunctional Nickel Catalyst vol.57, pp.39, 2017, https://doi.org/10.1021/acs.iecr.8b02807
  2. Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReOx/ZrO2 catalyst: zirconia and rhenium oxide as efficient dehydration promoters vol.20, pp.7, 2017, https://doi.org/10.1039/c7gc03823b
  3. Stabilization of bio-oil over a low cost dolomite catalyst vol.35, pp.4, 2017, https://doi.org/10.1007/s11814-018-0002-3
  4. Review of the use of activated biochar for energy and environmental applications vol.26, pp.None, 2017, https://doi.org/10.5714/cl.2018.26.001
  5. Catalytic Copyrolysis of Cork Oak and Waste Plastic Films over HBeta vol.8, pp.8, 2017, https://doi.org/10.3390/catal8080318
  6. Exhaust emissions of a diesel engine using ethanol-in-palm oil/diesel microemulsion-based biofuels vol.23, pp.3, 2017, https://doi.org/10.4491/eer.2017.204
  7. Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar vol.28, pp.None, 2017, https://doi.org/10.5714/cl.2018.28.081
  8. Catalytic Pyrolysis of Polyethylene and Polypropylene over Desilicated Beta and Al-MSU-F vol.8, pp.11, 2017, https://doi.org/10.3390/catal8110501
  9. Catalytic Co-Pyrolysis of Kraft Lignin with Refuse-Derived Fuels Using Ni-Loaded ZSM-5 Type Catalysts vol.8, pp.11, 2018, https://doi.org/10.3390/catal8110506
  10. Effect of Accelerated High Temperature on Oxidation and Polymerization of Biodiesel from Vegetable Oils vol.11, pp.12, 2017, https://doi.org/10.3390/en11123514
  11. Recently developed methods to enhance stability of heterogeneous catalysts for conversion of biomass-derived feedstocks vol.36, pp.1, 2017, https://doi.org/10.1007/s11814-018-0174-x
  12. Acetaldehyde removal and increased H2/CO gas yield from biomass gasification over metal-loaded Kraft lignin char catalyst vol.232, pp.None, 2019, https://doi.org/10.1016/j.jenvman.2018.11.054
  13. Thermo‐chemical conversion of biomass and upgrading to biofuel: The Thermo‐Catalytic Reforming process - A review vol.13, pp.3, 2019, https://doi.org/10.1002/bbb.1980
  14. Upscaling of Thermo-Catalytic Reforming Process from Lab to Pilot Scale vol.58, pp.35, 2019, https://doi.org/10.1021/acs.iecr.9b00765
  15. In-Situ Catalytic Fast Pyrolysis of Pinecone over HY Catalysts vol.9, pp.12, 2017, https://doi.org/10.3390/catal9121034
  16. Catalytic Hydrodeoxygenation of Fast Pyrolysis Bio-Oil from Saccharina japonica Alga for Bio-Oil Upgrading vol.9, pp.12, 2019, https://doi.org/10.3390/catal9121043
  17. Production of Aromatic Hydrocarbons from Biomass vol.61, pp.1, 2021, https://doi.org/10.1134/s0965544121010023
  18. Operation of bio-aviation fuel manufacturing facility via hydroprocessed esters and fatty acids process and optimization of fuel property for turbine engine test vol.38, pp.6, 2017, https://doi.org/10.1007/s11814-021-0770-z