DOI QR코드

DOI QR Code

Prediction and optimization of hydrogen yield and energy conversion efficiency in a non-catalytic filtration combustion reactor for jet A and butanol fuels

  • Shabanian, Seyed Reza (Department of Chemical Engineering, Babol Noshirvani University of Technology) ;
  • Edrisi, Sanaz (Department of Chemical Engineering, Babol Noshirvani University of Technology) ;
  • Khoram, Fatemeh Vahdat (Department of Chemical Engineering, Babol Noshirvani University of Technology)
  • Received : 2017.01.10
  • Accepted : 2017.05.17
  • Published : 2017.08.01

Abstract

Hydrogen production is one of main subjects in fuel cells. The traditional method of synthesis gas production is based on fuel reforming using catalysts. The main problem of these methods is sensitivity and fast degradation of catalysts especially when fuels with high sulfur content are used. A new technique for hydrogen production is fuel-reforming using non-catalytic filtration combustion in porous media reactors. Various experimental works have been carried out to increase hydrogen production under different operating conditions such as inlet fuel velocity and equivalence ratio. First, we investigated the ability of adaptive neuro fuzzy inference system (ANFIS) for predicting the filtration combustion characteristics. Four distinct ANFIS models were developed for estimating the hydrogen yield and energy conversion efficiency for fuels of jet A and butanol. Eight different membership functions of dsigmf, gauss2mf, gaussmf, gbellmf, pimf, psigmf, trapmf and trimf were tested for training of the ANFIS networks. The results showed that the RMSE of the best developed ANFIS models for estimating of the hydrogen yield of jet fuel, hydrogen yield of butanol, conversion efficiency of jet fuel and conversion efficiency of butanol were 1.399, 1.213, 0.508 and 2.191, respectively. Moreover the $R^2$ values of 0.998, 0.998, 0.999 and 0.999 were obtained for predicting the above mentioned variables, respectively. In the second step, a novel algorithm based on imperialist competitive algorithm (ICA) was used for optimization of hydrogen yield and energy efficiency. The maximum value of hydrogen yield and energy efficiency was 50.46% and 67.88% for jet A and 47.27% and 96.93% for butanol, respectively. The results showed that the imperialist competitive algorithm is an efficient and powerful algorithm to optimize combustion processes.

Keywords

References

  1. H. Pedersen-Mjaanes, L. Chan and E. Mastorakos, Int. J. Hydrogen Energy, 30, 579 (2005). https://doi.org/10.1016/j.ijhydene.2004.05.006
  2. C. H. Smith, D. M. Leahey, L. E. Miller and J. L. Ellzey, Proceedings of the Combustion Institute, 33(2), 3317 (2011). https://doi.org/10.1016/j.proci.2010.06.006
  3. C. H. Smith, D. I. Pineda, C.D. Zak and J. L. Ellzey, Int. J. Hydrogen Energy, 38(2), 879 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.102
  4. R. S. Dhamrat and J. L. Ellzey, Combust. Flame, 144(4), 698 (2006). https://doi.org/10.1016/j.combustflame.2005.08.038
  5. M. J. Dixon, I. Schoegl, C.B. Hull and J.L. Ellzey, Combust. Flame, 154(1-2), 217 (2008). https://doi.org/10.1016/j.combustflame.2008.02.004
  6. S.R. Shabanian, M. Rahimi, A. Amiri, S. Sharifnia and A.A. Alsairafi, Korean J. Chem. Eng., 29(11), 1531 (2012). https://doi.org/10.1007/s11814-012-0030-3
  7. S. S. Bharadwaj and L.D. Schmidt, Fuel Processing Technol., 42(2-3), 109 (1995). https://doi.org/10.1016/0378-3820(94)00098-E
  8. D. J. Moon, J.W. Ryu, S.D. Lee, B.G. Lee and B.S. Ahn, Appl. Catal. A: Gen., 272(1-2), 53 (2004). https://doi.org/10.1016/j.apcata.2004.05.009
  9. S. Velu, X. Ma, C. Song, M. Namazian, S. Sethuraman and G. Venkataraman, Energy Fuels, 19(3), 1116 (2005). https://doi.org/10.1021/ef049800b
  10. S. L. Lakhapatri and M.A. Abraham, Appl. Catal. A: Gen., 405(1-2), 149 (2011). https://doi.org/10.1016/j.apcata.2011.08.004
  11. R. Araya, K. Araus, K. Utria and M. Toledo, Int. J. Hydrogen Energy, 39, 7338 (2014), DOI:10.1016/j.ijhydene.2014.02.113.
  12. C. H. Smith, C.D. Zak, D. Pineda and J. L. Ellzey, Conversion of Jet A to Syngas by Filtration Combustion, 7th US National Technical Meeting of the Combustion Institute Hosted by the Georgia Institute of Technology, Atlanta, GA (2011).
  13. N.A. Kakutkina and V.A. Bunev, Explosion, and Shock Waves, 37(4), 395 (2001). https://doi.org/10.1023/A:1017884509363
  14. M. Toledo, F. Gracia, S. Caro, J. Gomez and V. Jovicic, Int. J. Hydrogen Energy, 41, 5857 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.065
  15. A. Pastore and E. Mastorakos, Exp. Therm. Fluid Sci., 34, 359 (2010). https://doi.org/10.1016/j.expthermflusci.2009.10.017
  16. A. Pastore and E. Mastorakos, Fuel, 90, 64 (2011). https://doi.org/10.1016/j.fuel.2010.08.003
  17. S.R. Shabanian, M. Rahimi, A. Khoshhal and A.A. Alsairafi, Iranian J. Chem. Chem. Eng. (IJCCE), 29(4), 161 (2010).
  18. R. Beigzadeh, M. Rahimi and S.R. Shabanian, Fluid Phase Equilib., 331, 48 (2012). https://doi.org/10.1016/j.fluid.2012.06.025
  19. L. Guoneng, Z. Hao, Q. Xinping and C. Kefa, Chinese J. Chem. Eng., 16(2), 292 (2008). https://doi.org/10.1016/S1004-9541(08)60077-4
  20. P. Glarborg, J. A. Miller and R. J. Kee, Combust. Flame, 65(2), 177 (1986). https://doi.org/10.1016/0010-2180(86)90018-0
  21. S. H. Riazi, H. Heydari, E. Ahmadpour, A. Gholami and S. Parvizi, J. Natural Gas Sci. Eng., 18, 377 (2014). https://doi.org/10.1016/j.jngse.2014.03.012
  22. M.A. Ahmadi, M. Ebadi, A. Shokrollahi and S. M. J. Majidi, Appl. Soft Computing, 13(2), 1085 (2013). https://doi.org/10.1016/j.asoc.2012.10.009
  23. M.A. Ahmadi, J. Petroleum Exploration and Production Technol., 1(2), 99 (2011). https://doi.org/10.1007/s13202-011-0013-7
  24. S.M. Berneti and M. Shahbazian, Int. J. Comput. Applications, 26(10), 47 (2011).
  25. S. Zendehboudi, M. A. Ahmadi, O. Mohammadzadeh, A. Bahadori and I. Chatzis, Ind. Eng. Chem. Res., 52(17), 6009 (2013). https://doi.org/10.1021/ie301949c
  26. M. Abolhasani, A. Karami and M. Rahimi, Numerical Heat Transfer, Part A, 67, 1282 (2015). https://doi.org/10.1080/10407782.2014.955371
  27. N. Fitriyani, S.D.N. Nahdliyah and T.R. Biyanto, Operational Optimization of Binary Distillation Column to Achieve Product Quality using Imperialist Competitive Algorithm (ICA), 6th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia (2016).
  28. M.A. Al Dossary and H. Nasrabadi, J. Petroleum Sci. Eng., 147, 237 (2016). https://doi.org/10.1016/j.petrol.2016.06.017
  29. R. Rajabioun, E. Atashpaz-Gargarif and C. Lucas, Colonial Competitive Algorithm as a Tool for Nash Equilibrium Point Achievement, In: Gervasi O., Murgante B., Lagana A., Taniar D., Mun Y., Gavrilova M.L. (Eds.) Computational Science and Its Applications - ICCSA. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 5073, 680 (2008).
  30. H. Sepehri Rad and C. Lucas, Application of Imperialistic Competition Algorithm in Recommender Systems. In 13th international CSI computer conference (CSICC'08), Kish Island, Iran (2008).
  31. A. Maroufmashat, F. Sayedin and S. S. Khavas, Int. J. Hydrogen Energy, 39, 18743 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.125
  32. K.K. Justesen, S. J. Andreasen, H.R. Shaker, M. P. Ehmsen and J. Andersen, Int. J. Hydrogen Energy, 38, 10577 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.013
  33. K.K. Justesen and S. J. Andreasen, Int. J. Hydrogen Energy, 40, 9505 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.085
  34. W. Yaici and E. Entchev, Renewable Energy, 86, 302 (2016). https://doi.org/10.1016/j.renene.2015.08.028
  35. V.K. Mishra, S.C. Mishra and D.N. Basu, Numerical Heat Transfer, Part A, 67, 1119 (2015). https://doi.org/10.1080/10407782.2014.955358
  36. V. Bubnovich, L. Henriquez and N. Gnesdilov, Numerical Heat Transfer, Part A, 52, 275 (2007). https://doi.org/10.1080/00397910601149942
  37. M. Bidabadi, J. Fereidooni, R. Tavakoli and M. Mafi, Korean J. Chem. Eng., 28(2), 461 (2011). https://doi.org/10.1007/s11814-010-0371-8
  38. S.R. Shabanian and A.A. Abdoos, A hybrid soft computing approach based on feature selection for estimation of filtration combustion characteristics, neural computing and application, 2017 (in press), DOI:10.1007/s00521-017-2956-1.
  39. C. H. Smith, C.D. Zak and J. L. Ellzey, Conversion of Bio-butanol to Syngas via Filtration Combustion, 2010 Spring Technical Meeting of the Western States Section of the Combustion Institute hosted by University of Colorado at Boulder, Boulder, CO (2010).
  40. E. Atashpaz-Gargari and C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, IEEE Congress on Evolutionary Computation, 4661, Singapore (2007).
  41. J.-S.R. Jang, C.-T. Sun and E. Mizutani, Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice-Hall (1996).
  42. J.-S.R. Jang and C.-T. Sun, IEEE Transactions on Neural Networks, 4(1), 156 (1993). https://doi.org/10.1109/72.182710
  43. J. S.R. Jang, ANFIS - adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665 (1993). https://doi.org/10.1109/21.256541
  44. R. Beigzadeh, M. Hajialyani and M. Rahimi, Korean J. Chem. Eng., 33(5), 1534 (2016). https://doi.org/10.1007/s11814-015-0281-x
  45. S.R. Shabanian, S. lashgari and T. Hatami, Numerical Heat Transfer, Part A, 70(1), 30 (2016). https://doi.org/10.1080/10407782.2016.1139982
  46. S.N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Springer Science and Business Media, New York (2007).
  47. C.C. Yuen, Aatmeeyata, S.K. Guptaf and A.K. Ray, J. Membr. Sci., 176, 177 (2000). https://doi.org/10.1016/S0376-7388(00)00440-3

Cited by

  1. Computational intelligence approach for modeling hydrogen production: a review vol.12, pp.1, 2018, https://doi.org/10.1080/19942060.2018.1452296
  2. Conversion of liquid combustible wastes in the filtration regime to syngas by partial oxidation vol.1276, pp.None, 2017, https://doi.org/10.1088/1742-6596/1276/1/012083
  3. Effect of Bismuth Sulfate Coated on Acidified CNT on Performance of Vanadium Redox Flow Battery vol.166, pp.12, 2017, https://doi.org/10.1149/2.1181912jes
  4. Filtration Combustion of Hydrocarbon Fluids in a Moving Bed of Inert Heat-Carrying Agent vol.92, pp.2, 2017, https://doi.org/10.1134/s1070427219020162
  5. 수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과 vol.57, pp.6, 2017, https://doi.org/10.9713/kcer.2019.57.6.847
  6. Evaluation of the moment-rotation curve of steel beam-to-column joints with flange-plate vol.21, pp.3, 2017, https://doi.org/10.1007/s42107-019-00213-2
  7. Investigation of boiling heat transfer coefficients of different refrigerants for low fin, Turbo-B and Thermoexcel-E enhanced tubes using computational smart schemes vol.141, pp.3, 2017, https://doi.org/10.1007/s10973-019-09075-x
  8. Experimental and modeling study of heat transfer enhancement of TiO2/SiO2 hybrid nanofluids on modified surfaces in pool boiling process vol.135, pp.10, 2017, https://doi.org/10.1140/epjp/s13360-020-00809-7
  9. Enhanced Electrocatalytic Activity of Stainless Steel Substrate by Nickel Sulfides for Efficient Hydrogen Evolution vol.10, pp.11, 2017, https://doi.org/10.3390/catal10111274
  10. Operation of bio-aviation fuel manufacturing facility via hydroprocessed esters and fatty acids process and optimization of fuel property for turbine engine test vol.38, pp.6, 2017, https://doi.org/10.1007/s11814-021-0770-z