DOI QR코드

DOI QR Code

Equilibrium and kinetic studies of azo dye (Basic Red 18) adsorption onto montmorillonite: Numerical simulation and laboratory experiments

  • Received : 2016.12.16
  • Accepted : 2017.04.12
  • Published : 2017.08.01

Abstract

Adsorption of BR 18 dye onto nano-clay adsorbent was investigated. Nano-clay was characterized by using FTIR, SEM, TEM, XRD and BET analysis. The percent removal increased by increasing nano-clay dose, while pH and stirring speed had no significant effect on the adsorption rate. It was observed that the uptake of dye onto nano-clay initially increased rapidly, and then decreased slowly until the equilibrium was reached. The adsorption capacity rose with an increase in temperature. Moreover, the adsorption kinetics was very fast and followed a pseudo second-order. The intra-particle diffusion was observed to be the rate-controlling step. In addition, equilibrium data fitted well with the Langmuir adsorption model. This paper also presents a numerical simulation incorporating the second-order kinetic expression using COMSOL Multiphysics software. The numerical modelling results and the experimental data were in excellent agreement.

Keywords

References

  1. D. Bingol, S. Veli, S. Zor and U. Ozdemir, Synthetic Metals, 162, 1566 (2012). https://doi.org/10.1016/j.synthmet.2012.07.011
  2. Q. Liu, B. Yang, L. Zhang and R. Huang, Int. J. Biological Macromolecules, 72, 1129 (2015). https://doi.org/10.1016/j.ijbiomac.2014.10.008
  3. R. Sivashankar, A. Sathya, K. Vasantharaj and V. Sivasubramanian, Environ. Nanotechnol., Monitoring Manage., 1, 36 (2014).
  4. M. Gholami, M. Shirzad-Siboni and J.-K. Yang, Korean J. Chem. Eng., 33, 812 (2016). https://doi.org/10.1007/s11814-015-0218-4
  5. S. Afroze, T. K. Sen and H. Ang, Research on Chemical Intermediates, 42, 2343 (2016). https://doi.org/10.1007/s11164-015-2153-8
  6. T. Robinson, B. Chandran and P. Nigam, Environ. International, 28, 29 (2002). https://doi.org/10.1016/S0160-4120(01)00131-3
  7. T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 77, 247 (2001). https://doi.org/10.1016/S0960-8524(00)00080-8
  8. F. Mateen, I. Javed, U. Rafique, N. Tabassum, M. Sarfraz, S.Z. Safi, I. Yusoff and M. A. Ashraf, Desalination and Water Treatment, 57, 6230 (2016). https://doi.org/10.1080/19443994.2015.1005146
  9. M. Rafatullah, O. Sulaiman, R. Hashim and A. Ahmad, J. Hazard. Mater., 177, 70 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047
  10. M. Toor and B. Jin, Chem. Eng. J., 187, 79 (2012). https://doi.org/10.1016/j.cej.2012.01.089
  11. M. Alkan, M. Dogan, Y. Turhan, O. Demirbas and P. Turan, Chem. Eng. J., 139, 213 (2008). https://doi.org/10.1016/j.cej.2007.07.080
  12. S. Haddadi Khorzughy, T. Eslamkish, F. Doulati Ardejani and M.R. Heydartaemeh, Korean J. Chem. Eng., 32, 88 (2015). https://doi.org/10.1007/s11814-014-0168-2
  13. T. Sismanoglu and A.Z. Aroguz, Desalination and Water Treatment, 54, 736 (2015). https://doi.org/10.1080/19443994.2014.887039
  14. B. Acevedo, R.P. Rocha, M.F. Pereira, J.L. Figueiredo and C. Barriocanal, J. Colloid Interface Sci., 459, 189 (2015). https://doi.org/10.1016/j.jcis.2015.07.068
  15. N. Abidi, E. Errais, J. Duplay, A. Berez, A. Jrad, G. Schafer, M. Ghazi, K. Semhi and M. Trabelsi-Ayadi, J. Cleaner Production, 86, 432 (2015). https://doi.org/10.1016/j.jclepro.2014.08.043
  16. M. Auta and B.H. Hameed, Environ. Eng. Manage. J., 14, 955 (2015). https://doi.org/10.30638/eemj.2015.106
  17. K. Bennani, B. Mounir, M. Hachkar, M. Bakasse and A. Yaacoubi, J. Mater. Environ. Sci., 6, 2483 (2015).
  18. Y.-M. Chen, T.-M. Tsao, M.-K. Wang, S. Yu, C.-C. Liu, H.-C. Li, C.-Y. Chiu and L.-C. Wang, Water Environ. Res., 87, 88 (2015). https://doi.org/10.2175/106143014X14062131179159
  19. P. Liu and L. Zhang, Sep. Purif. Technol., 58, 32 (2007). https://doi.org/10.1016/j.seppur.2007.07.007
  20. S.C. Santos and R. A. Boaventura, J. Environ. Chem. Eng., 4, 1473 (2016). https://doi.org/10.1016/j.jece.2016.02.009
  21. A.M. Bandpei, S.M. Mohseni, A. Sheikhmohammadi, M. Sardar, M. Sarkhosh, M. Almasian, M. Avazpour, Z. Mosallanejad, Z. Atafar and S. Nazari, Korean J. Chem. Eng., 1 (2015).
  22. C.-Y. Ryu and S.-D. Yeo, Korean J. Chem. Eng., 27, 602 (2010). https://doi.org/10.1007/s11814-010-0084-z
  23. G.K. Sarma, S. S. Gupta and K. G. Bhattacharyya, J. Environ. Manage., 171, 1 (2016). https://doi.org/10.1016/j.jenvman.2016.01.038
  24. J. Ahmadishoar, H. S. Bahrami, B. Movassagh, H. S. Amirshahi and M. Arami, Chem. Industry Chem. Eng. Quarterly, 49 (2016).
  25. L. Ma, Y. Xi, H. He, G. A. Ayoko, R. Zhu and J. Zhu, Appl. Clay Sci., 120, 9 (2016). https://doi.org/10.1016/j.clay.2015.11.010
  26. H. Hosseinzadeh and N. Khoshnood, Desalination and Water Treatment, 57, 6372 (2016). https://doi.org/10.1080/19443994.2015.1008052
  27. B.A. Fil, Particulate Sci. Technol., 34, 118 (2016). https://doi.org/10.1080/02726351.2015.1052122
  28. F. Doulati Ardejani, K. Badii, N.Y. Limaee, N. Mahmoodi, M. Arami, S. Shafaei and A. Mirhabibi, Dyes Pigments, 73, 178 (2007). https://doi.org/10.1016/j.dyepig.2005.11.011
  29. M. Ghadiri, M. Asadollahzadeh and A. Hemmati, J. Water Process Eng., 6, 144 (2015). https://doi.org/10.1016/j.jwpe.2015.04.002
  30. J. Xiao, Y. Liu, J. Wang, P. Benard and R. Chahine, Int. J. Heat Mass Transfer., 55, 6864 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.093
  31. Q. Li, K. Ito, Z. Wu, C. S. Lowry, I. Loheide and P. Steven, Ground Water, 47, 480 (2009). https://doi.org/10.1111/j.1745-6584.2009.00584.x
  32. W. Qian, J. Wu, L. Yang, X. Lin, Y. Chen, X. Chen, J. Xiong, J. Bai and H. Ying, Chem. Eng. J., 197, 424 (2012). https://doi.org/10.1016/j.cej.2012.05.020
  33. L. Wissmeier and D. A. Barry, Environ. Modelling Software, 26, 210 (2011). https://doi.org/10.1016/j.envsoft.2010.07.005
  34. S. Netpradit, P. Thiravetyan and S. Towprayoon, Water Res., 37, 763 (2003). https://doi.org/10.1016/S0043-1354(02)00375-5
  35. I. Langmuir, J. American Chem. Soc., 38, 2221 (1916). https://doi.org/10.1021/ja02268a002
  36. S. S. Abkenar, R. M.A. Malek and F. Mazaheri, J. Environ. Manage., 163, 53 (2015). https://doi.org/10.1016/j.jenvman.2015.08.003
  37. H. Freundlich, J. Phys. Chem., 57, 1100 (1906).
  38. A. Mittal, D. Jhare and J. Mittal, J. Mole. Liq., 179, 133 (2013). https://doi.org/10.1016/j.molliq.2012.11.032
  39. M. Auta and B. Hameed, Chem. Eng. J., 198, 219 (2012).
  40. M. Mostafa, Y.-H. Chen, J.-S. Jean, C.-C. Liu and Y.-C. Lee, J. Hazard. Mater., 187, 89 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.117
  41. Y.-S. Ho and G. McKay, Process Biochem., 34, 451 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  42. K. Rida, S. Bouraoui and S. Hadnine, Appl. Clay Sci., 83, 99 (2013).
  43. W. J. Weber and J. C. Morris, J. Sanitary Eng. Division, 89, 31 (1963).
  44. L. Wang, J. Environ. Manage., 102, 79 (2012). https://doi.org/10.1016/j.jenvman.2012.02.019
  45. B.A. Robinson, Z. Lu and D. Pasqualini, Applied Mathematics, 3, 1161 (2012). https://doi.org/10.4236/am.2012.310170
  46. I. Bortone, A. Di Nardo, M. Di Natale, A. Erto, D. Musmarra and G. Santonastaso, J. Hazard. Mater., 260, 914 (2013). https://doi.org/10.1016/j.jhazmat.2013.06.050
  47. P. S. Nayak and B. Singh, Bulletin Mater. Sci., 30, 235 (2007). https://doi.org/10.1007/s12034-007-0042-5
  48. G. Lv, Z. Li, W.-T. Jiang, P.-H. Chang and L. Liao, Mater. Chem. Phys., 162, 417 (2015). https://doi.org/10.1016/j.matchemphys.2015.06.008
  49. D. Liu, P. Yuan, H. Liu, J. Cai, D. Tan, H. He, J. Zhu and T. Chen, Appl. Clay Sci., 80, 407 (2013).
  50. A. Hassani, M. Kiransan, R.D.C. Soltani, A. Khataee and S. Karaca, Turkish J. Chem., 39, 734 (2015). https://doi.org/10.3906/kim-1412-64
  51. M. Grieve, R. Griffin and R. Malone, Sci. Justice, 38, 27 (1998). https://doi.org/10.1016/S1355-0306(98)72070-2
  52. V. Venkateswaran, P. Kalaamani and N. Karpagam, Chem. Sci. Transaction, 4, 347 (2015).
  53. V.K. Garg, M. Amita, R. Kumar and R. Gupta, Dyes Pigments, 63, 243 (2004). https://doi.org/10.1016/j.dyepig.2004.03.005
  54. F. Nekouei, S. Nekouei, I. Tyagi and V.K. Gupta, J. Mole. Liq., 201, 124 (2015). https://doi.org/10.1016/j.molliq.2014.09.027
  55. B. Tanhaei, A. Ayati, M. Lahtinen and M. Sillanpaa, Chem. Eng. J., 259, 1 (2015). https://doi.org/10.1016/j.cej.2014.07.109
  56. A. Tehrani-Bagha, H. Nikkar, N. Mahmoodi, M. Markazi and F. Menger, Desalination, 266, 274 (2011). https://doi.org/10.1016/j.desal.2010.08.036
  57. O. Duman, S. Tunc and T. G. Polat, Micropor. Mesopor. Mater., 210, 176 (2015). https://doi.org/10.1016/j.micromeso.2015.02.040
  58. V. Garg, R. Gupta, A.B. Yadav and R. Kumar, Bioresour. Technol., 89, 121 (2003). https://doi.org/10.1016/S0960-8524(03)00058-0
  59. B. Nandi, A. Goswami and M. Purkait, J. Hazard. Mater., 161, 387 (2009). https://doi.org/10.1016/j.jhazmat.2008.03.110
  60. T. Anirudhan and M. Ramachandran, Process Safety Environ. Protection, 95, 215 (2015). https://doi.org/10.1016/j.psep.2015.03.003
  61. K. Chinoune, K. Bentaleb, Z. Bouberka, A. Nadim and U. Maschke, Appl. Clay Sci., 123, 64 (2016). https://doi.org/10.1016/j.clay.2016.01.006
  62. B. Hameed and M. El-Khaiary, J. Hazard. Mater., 154, 639 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.081
  63. P. Faria, J. Orfao and M. Pereira, Water Res., 38, 2043 (2004). https://doi.org/10.1016/j.watres.2004.01.034
  64. I. Tan, B. Hameed and A. Ahmad, Chem. Eng. J., 127, 111 (2007). https://doi.org/10.1016/j.cej.2006.09.010
  65. A. Hassani, R.D.C. Soltani, S. Karaca and A. Khataee, J. Ind. Eng. Chem., 21, 1197 (2015). https://doi.org/10.1016/j.jiec.2014.05.034
  66. D.K. Mahmoud, M. A. M. Salleh, W. A.W.A. Karim, A. Idris and Z. Z. Abidin, Chem. Eng. J., 181, 449 (2012).
  67. S. Sonawane, P. Chaudhari, S. Ghodke, S. Ambade, S. Gulig, A. Mirikar and A. Bane, Ultrasonics Sonochemistry, 15, 1033 (2008). https://doi.org/10.1016/j.ultsonch.2008.03.006
  68. H. Hosseinzadeh, S. Zoroufi and G.R. Mahdavinia, Polymer Bulletin, 72, 1339 (2015). https://doi.org/10.1007/s00289-015-1340-5
  69. F. Doulati Ardejani, K. Badii, F. Farhadi, M.A. Saberi and B.J. Shokri, Environ. Modeling Assessment, 17, 505 (2012). https://doi.org/10.1007/s10666-012-9310-x
  70. J. P. Orjuela and A. Gonzalez, Comsol Conference, Boston (2011).

Cited by

  1. 활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석 vol.58, pp.3, 2017, https://doi.org/10.9713/kcer.2020.58.3.458
  2. 활성탄에 의한 Acid Black과 Quinoline Yellow의 흡착특성 및 파라미터 vol.26, pp.3, 2017, https://doi.org/10.7464/ksct.2020.26.3.186
  3. BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: Equilibrium, thermodynamic, kinetic and reusability studies vol.158, pp.None, 2017, https://doi.org/10.1016/j.cep.2020.108186
  4. 입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터 vol.27, pp.1, 2017, https://doi.org/10.7464/ksct.2021.27.1.47