DOI QR코드

DOI QR Code

A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture

  • Kook, Jin Woo (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Gwak, In Seop (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Gwak, You Ra (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Seo, Myung Won (Clean Fuel Department, KIER) ;
  • Lee, See Hoon (Department of Resources and Energy Engineering, Chonbuk National University)
  • Received : 2017.01.25
  • Accepted : 2017.08.04
  • Published : 2017.12.01

Abstract

Characteristics of Char-$CO_2$ gasification were compared in the temperature range of $1,100-1,400^{\circ}C$ using a thermogravimetric analyzer (TGA) for petroleum coke, coal chars and mixed fuels (Petroleum coke/coal ratios: 0, 0.25, 0.5, 0.75, 1). The results showed that reaction time decreased with increasing gasification temperature, BET surface area and alkali index of coal. Mixed fuels composed of petroleum coke/coal exhibited reduced activation energies. Modified volumetric reaction model and shrinking core model might be suitably matched with experimental data depending on coal type and petroleum coke/coal ratio. Rate equations were suggested by selecting gas-solid reaction rate models for each sample that could simulate $CO_2$ gasification behavior.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Council of Science & Technology (NST)

References

  1. S. H. Lee, S.T. Park, R. Lee, J. H. Hwang and J. M. Sohn, Korean J. Chem. Eng., 33, 3523 (2016). https://doi.org/10.1007/s11814-016-0208-1
  2. C. Dupont, T. Nocquet, J.A. Da Costa and C. Verne-Tournon, Bioresour. Technol., 102, 9743 (2011). https://doi.org/10.1016/j.biortech.2011.07.016
  3. C. Bu, A. Gomez-Barea, X. Chen, B. Leckner, D. Liu, D. Pallares and P. Lu, Appl. Energy, 177, 247 (2016). https://doi.org/10.1016/j.apenergy.2016.05.108
  4. D.G. Roberts and D. J. Harris, Energy Fuels, 14, 483 (2000). https://doi.org/10.1021/ef9901894
  5. J. H. Zou, Z. J. Zhou, F. C. Wang, W. Zhang, Z. H. Dai, H. F. Liu and Z. H. Yu, Chem. Eng. Process., 46, 630 (2007). https://doi.org/10.1016/j.cep.2006.08.008
  6. E. M. A. Edreis, G. Luo, A. Li, C. Xu and H. Yao, Energy Convers. Manage., 79, 355 (2014). https://doi.org/10.1016/j.enconman.2013.12.043
  7. J. H. Shin, R. S. Lee and S. H. Lee, Korean Chem. Eng. Res., 54, 1 (2016). https://doi.org/10.9713/kcer.2016.54.1.1
  8. S. J. Yoon, Y. C. Choi, S. H. Lee and J. G. Lee, Korean J. Chem. Eng., 24(3), 512 (2007). https://doi.org/10.1007/s11814-007-0090-y
  9. B.N. Murthy, A.N. Sawarkar, N.A. Deshmukh, T. Mathew and J. B. Joshi, Canadian J. Chem. Eng., 92(3), 441 (2014).
  10. J. Fermoso, B. Arias, M. Plaza, C. Pevida, F. Rubiera, J. Pis, F. Garcia-Pena and P. Casero, Fuel Process. Technol., 90, 926 (2009). https://doi.org/10.1016/j.fuproc.2009.02.006
  11. S.H. Lee, S. J. Yoon, H.W. Ra, Y. I. Son, J. C. Hong and J. G. Lee, Energy, 35, 3239 (2010). https://doi.org/10.1016/j.energy.2010.04.007
  12. C. Zhao, L. Lin, K. Pang, W. Xiang and X. Chen, Fuel Process. Technol., 91, 805 (2010). https://doi.org/10.1016/j.fuproc.2009.08.010
  13. W. Huo, Z. Zhou, X. Chen, Z. Dai and G. Yu, Bioresour. Technol., 159, 143 (2014). https://doi.org/10.1016/j.biortech.2014.02.117
  14. K. Jayaraman and I. Gokalp, Appl. Therm. Eng., 80, 10 (2015). https://doi.org/10.1016/j.applthermaleng.2015.01.026
  15. B.R. Clements, Q. Zhuang, R. Pomalis, J. Wong and D. Campbell, Fuel, 97, 315 (2012). https://doi.org/10.1016/j.fuel.2012.01.009
  16. E.M.A. Edreis, G. Luo, A. Li, C. Chao, H. Hu, S. Zhang, B. Gui, L. Xiao, K. Xu, P. Zhang and H. Yao, Bioresour. Technol., 136, 595 (2013). https://doi.org/10.1016/j.biortech.2013.02.112
  17. A. Goyal, S. Pushpavanam and R.K. Voolapalli, Fuel Process. Technol., 91, 1296 (2010). https://doi.org/10.1016/j.fuproc.2010.04.012
  18. S. J. Gong, X. Zhu, Y. J. Kim, B. H. Song, W. Yang, W. S. Moon and Y. S. Byoun, Korean Chem. Eng. Res., 48, 80 (2010).
  19. R.C. Timpe, R.E. Sears and G.G. Montgomery, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 32 (1987).
  20. G. Ballal, N. Girish and R. Amundson, Chem. Eng. Sci., 44, 1763 (1989). https://doi.org/10.1016/0009-2509(89)85119-X
  21. S. Dutta and C.Y. Wen, Ind. Eng. Chem. Proc. Dev., 16 (1977).
  22. S. Nagpal, T. K. Sarkar and P.K. Sen, Fuel Process. Technol., 86, 617 (2005). https://doi.org/10.1016/j.fuproc.2004.05.012
  23. L. Zhang, J. Huang, Y. Fang and Y. Wang, Energy Fuels, 20, 1201 (2006). https://doi.org/10.1021/ef050343o
  24. M. F. Irfan, M.R. Usman and K. Kusakabe, Energy, 36, 12 (2011). https://doi.org/10.1016/j.energy.2010.10.034
  25. S.K. Kim, C.Y. Park, J.Y. Park, S. H. Lee, J. H. Rhu, M. H. Han, S. K. Yoon and Y.W. Rhee, J. Ind. Eng. Chem., 20, 356 (2014). https://doi.org/10.1016/j.jiec.2013.03.027
  26. S.K. Kim, J.Y. Park, D. K. Lee, S. C. Hwang, S. H. Lee and Y.W. Rhee, J. Energy Eng., 142 (2015), DOI:10.1061/(ASCE)EY.1943-7897.0000294.

Cited by

  1. CO2 gasification performance and alkali/alkaline earth metals catalytic mechanism of Zhundong coal char vol.35, pp.4, 2017, https://doi.org/10.1007/s11814-017-0357-x
  2. Na2CO3 catalyzed CO2 gasification of coal char and its intermediate complexes vol.44, pp.12, 2017, https://doi.org/10.1007/s11164-018-3586-7
  3. Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace vol.26, pp.10, 2017, https://doi.org/10.1007/s12613-019-1846-1
  4. Novel Kinetic Model for Petcoke Gasification at High Temperature vol.33, pp.11, 2017, https://doi.org/10.1021/acs.energyfuels.9b02446
  5. 순환유동층 보일러 로내 탈황을 위한 석회석 평가 vol.57, pp.6, 2017, https://doi.org/10.9713/kcer.2019.57.6.853
  6. The prediction of CO2 emissions in domestic power generation sector between 2020 and 2030 for Korea vol.32, pp.5, 2021, https://doi.org/10.1177/0958305x20971628