DOI QR코드

DOI QR Code

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing

클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안

  • Baek, Jeong-Hyun (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Heo, Jeong-Wook (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Hyun-Hwan (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Hong, Youngsin (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Jae-Su (Dept. of Agricultural Engineering, National Institute of Agricultural Sciences, RDA)
  • 백정현 (국립농업과학원 농업공학부) ;
  • 허정욱 (국립농업과학원 농업공학부) ;
  • 김현환 (국립농업과학원 농업공학부) ;
  • 홍영신 (국립농업과학원 농업공학부) ;
  • 이재수 (국립농업과학원 농업공학부)
  • Received : 2017.09.26
  • Accepted : 2018.01.23
  • Published : 2018.01.31

Abstract

This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.

본 연구는 농업 및 정보 통신 기술의 융합을 기반으로 국내외 스마트 농장 서비스 모델을 검토하고 한국의 스마트 온실을 개선하기 위해 필요한 다양한 요인을 조사하기 위해 수행되었다. 국내 스마트 온실의 작물 생육모델 및 환경모델에 관한 연구는 제한적이었고, 연구를 위한 인프라를 구축하는 데는 많은 시간이 필요하다. 이러한 문제의 대안으로 클라우드 기반 연구 플랫폼이 필요하다. 제안된 클라우드 기반 연구 플랫폼은 통합 데이터, 생육환경모델, 구동기 제어 모델, 스마트 온실 관리, 지식 기반 전문가 시스템 및 농가 대시보드 모듈을 통해 통합적 데이터 저장 및 분석을 위한 연구 인프라를 제공한다. 또한 클라우드 기반 연구 플랫폼은 작물 생육환경, 생산성 및 액추에이터 제어와 같은 다양한 요인들 간의 관계를 정량화하는 기능을 제공하며, 연구자는 빅데이터, 기계 학습 및 인공지능을 활용하여 작물 생육 및 생장환경 모델을 분석할 수 있다.

Keywords

References

  1. Atole. A., A. Asmar, A. Biradar, N. Kothawade, S. Sarode, and R. G. Khope. 2017. IoT based smart farming system. International Journal of Emerging Technologies and Innovative Research(www.jetir.org), April 2017, 4(4):29-31.
  2. Baek, J.H., and H.L. Lee. 2014. Design and implementation of crop-environmental control cloud systems based on growth patterns. The Korean Institute of Information Scientists and Engineers, Database Society Journal, 30(2):57-66 (in Korean).
  3. Beecham Research. 2014. Towards smart farming - agriculture embracing the IoT vision. https://www.beechamresearch.com/files/BRL%20Smart%20Farming%20Executive%20Summary.pdf.
  4. Canadas, J., J. A. Sanchez-Molina, F. Rodriguez, and I. M. del Aguila. 2017. Improving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoes. Information Processing in Agriculture, 4(1):50-63. https://doi.org/10.1016/j.inpa.2016.12.002
  5. Gartner. 2017. Artificial intelligence, machine learning, and smart things promise an intelligent future. www.gartner.com/smarterwithgartner/gartners-top-10-technologytrends-2017/.
  6. Guerrini, F. 2015. The future of agriculture? smart farming. Forbes, http://www.forbes.com/sites/federicoguerrini/2015/18/the-future-of-agriculture-smart-farming/#5708f01a337c.
  7. Hameed, I., E. I. El-Madbouly, and M. I. Abdo. 2017. Reconfigurable adaptive fuzzy fault-hiding control for greenhouse climate control system. International Journal of Automation and Control, 11(2):164-187. https://doi.org/10.1504/IJAAC.2017.083297
  8. IRS Global Research. 2016. IoT-based smart agriculture and smart farm market forecasts and core technology development trends. http://www.irsglobal.com/.
  9. Kapnias, D., P. Ilias. 2016. Automated classification of land cover for the needs of CAP using Sentinel data. 22nd CPA/IACS conference, 24-25 Nov. 2016, Lisbon(Portugal).
  10. Lee, J.S., Y.G. Hong, G.H. Kim, D.H. Lee, S.R. Han, and D.H. Im. 2016. A study on development of cloud system for the smart greenhouse automatic control. The Korean Institute of Communications and Information Sciences, 19 Nov. 2016 Fall Conference. 61:559-560 (in Korean).
  11. Li, G., W. Zhang, and Y. Zhang. 2014. A design of the IOT gateway for agricultural greenhouse. Sensors & Transducers, 172(6):75.
  12. Liu, Y., and C. Bi. 2017. The design of greenhouse monitoring system based on ZigBee WSNs. In Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference. l(2):430-433.
  13. Michael J. O'Grady, and Gregory M.P. O'Hare, 2017, Modelling the smart farm, information, processing in agriculture, ISSN 2214-3173, http://dx.doi.org/10.1016/j.inpa.2017.05.001.
  14. Rural Development Administration(RDA), 2016, Big-data utilization for smart farm proper management (Tomato) p.66-72 (in Korean).
  15. Xin, J.N., and F. Zazueta. 2016. Technology trends in ICT -towards data-driven, farmer-centered and knowledge-based hybrid cloud architectures for smart farming. Agricultural Engineering International: CIGR Journal, 18(4):275-279.
  16. Yeo, U.H., I.B. Lee, K.S. Kwon, T.H. Ha, S.J. Park, R.W. Kim, and S.Y. Lee. 2016. Analysis of research trend and core technologies based on ICT to materialize smart-farm. Protected Horticulture and Plant Factory, 25(1):30-41 (in Korean). https://doi.org/10.12791/KSBEC.2016.25.1.30