DOI QR코드

DOI QR Code

Synthesis of Nanoporous Metal Oxide Films Using Anodic Oxidation and Their Gas Sensing Properties

  • Suh, Jun Min (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National Unversity) ;
  • Kim, Do Hong (Department of Materials Science and Engineering, Korea University) ;
  • Jang, Ho Won (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National Unversity)
  • Received : 2018.01.22
  • Accepted : 2018.01.29
  • Published : 2018.01.31

Abstract

Gas sensors based on metal oxide semiconductors are used in numerous applications including monitoring indoor air quality and detecting harmful substances like volatile organic compounds. Nanostructures, for example, nanoparticles, nanotubes, nanodomes, and nanofibers have been widely utilized to improve gas sensing properties of metal oxide semiconductors, and this increases the effective surface area, resulting in participation of more target gas molecules in the surface reaction. In the recent times, 1-dimensional (1D) metal oxide nanostructures fabricated using anodic oxidation have attracted great attention due to their high surface-to-volume ratio with large-area uniformity, reproducibility, and capability of synthesis under ambient air and pressure, leading to cost-effectiveness. Here, we provide a brief overview of 1D metal oxide nanostructures fabricated by anodic oxidation and their gas sensing properties. In addition, recent progress on thin film-based anodic oxidation for application in gas sensors is introduced.

Keywords

References

  1. A. Anderson, A. Cheung, and M. Lei, "Evaluation of Hong Kong's indoor air quality management programme: certification scheme, objectives, and technology," Bachelor of Sci. Proj. Rep., Polytechnic Institute, Worchester, MA 2014.
  2. T. Tang, R. Gminski, M. Ko?nczo?l, C. Modest, B. Armbruster, and V. Mersch-Sundermann, "Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system," Environ. Mol. Mutagen. Vol. 53, pp. 125-135, 2012. https://doi.org/10.1002/em.20695
  3. J. J. Zhang and K. R. Smith, "Indoor air pollution: a global health concern," Br. Med. Bull. Vol. 68(1), pp. 209-225, 2003. https://doi.org/10.1093/bmb/ldg029
  4. J.-M Jeon, T. L. Kim, Y.-S. Shim, Y. R. Choi, S. Lee, K. C. Kwon, S.-H. Hong, Y.-W. Kim, S. Y. Kim, M. Kim, and H. W. Jang, "Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in Metal-Decoration induced Reduction of Graphene Oxide," Adv. Mater., Vol. 29(15), pp. 1605929, 2017. https://doi.org/10.1002/adma.201605929
  5. Y.-S. Shim, H. G. Moon, D. H. Kim, L. Zhang, S.-J. Yoon, Y. S. Yoon, C.-Y. Kang, and H. W. Jang, "Au-decorated $WO_3$ cross-linked nanodomes for ultrahigh sensitive and selective sensing of $NO_2$ and $C_2H_5OH$," RSC Adv., Vol. 3, No. 26, pp. 10452-10459, 2013. https://doi.org/10.1039/c3ra41331d
  6. Y.-S. Shim, D. H. Kim, H. Y. Jeong, Y. H. Kim, S. H. Nahm, C.-Y. Kang, J.-S. Kim, W. Lee, and H. W. Jang, "Utilization of both-side metal decoration in close-packed $SnO_2$ nanodome arrays for ultrasensitive gas sensing," Sens. Actuator B-Chem., Vol. 213, pp. 314-321, 2015. https://doi.org/10.1016/j.snb.2015.02.103
  7. J. M. Suh, Y.-S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J.-M. Jeon, K. Hong, K. C. Kwon, S. Y. Park, C. Kim, J.-H. Lee, C.-Y. Kang, and H. W. Jang, "Synergetically Selective Toluene Sensing in Hematite Decorated Nickel Oxide Nanocorals," Adv. Mater. Technol., Vol. 2(3), pp. 1600259, 2017. https://doi.org/10.1002/admt.201600259
  8. H. G. Moon, Y.-S. Shim, D. Su, H.-H. Park, S.-J. Yoon, and H. W. Jang, "Embossed $TiO_2$ Thin Films with Tailored Links between Hollow Hemispheres: Synthesis and Gas Sensing Properties," J. Phys. Chem. C, Vol. 115(20), pp. 9993-9999, 2011. https://doi.org/10.1021/jp2020325
  9. Y.-S. Shim and H. W. Jang, "Design of Metal Oxide Hollow Structures Using Soft-templating Method for High-Performance Gas Sensors," J. Sens. Sci. Tech., Vol. 25(3), pp.178- 183, 2016. https://doi.org/10.5369/JSST.2016.25.3.178
  10. Y.-S. Shim, L. Zhang, D. H. Kim, Y. H. Kim, Y. R. Choi, S. H. Nahm, C.-Y. Kang, W. Lee, and H. W. Jang, "Highly sensitive and selective $H_2$ and $NO_2$ gas sensors based on surface-decorated $WO_3$ nanoigloos," Sens. Actuator BChem, Vol. 198, pp. 294-301, 2014 https://doi.org/10.1016/j.snb.2014.03.073
  11. H. G. Moon, Y.-S. Shim, D. H. Kim, H. W. Jang, S. H. Han, H.-H. Park, and S.-J. Yoon, "Highly Ordered Large-Area Colloid Templates for Nanostructured $TiO_2$ Thin Film Gas Sensors," J. Nanosci. Nanotechnol., Vol. 12(4), pp. 3496- 3500, 2012. https://doi.org/10.1166/jnn.2012.5589
  12. K. Lee, Y.-S. Shim, Y. G. Song, S. D. Han, Y.-S. Lee, and C.-Y. Kang, "Highly sensitive sensors based on metal-oxide nanocolumns for fire detection," Sensors, Vol. 17(2), pp. 303, 2017. https://doi.org/10.3390/s17020303
  13. S. D. Han, M.-S. Noh, S. Kim, Y.-S. Shim, Y. G. Song, K. Lee, H. R. Lee, S. Nahm, S.-J. Yoon, and J.-S. Kim, "Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of $In_2O_3$ based gas sensor," Sens. Actuator B-chem., Vol. 248, pp. 894-901, 2017. https://doi.org/10.1016/j.snb.2017.01.108
  14. S. D. Han, H. G. Moon, M.-S. Noh, J. J. Pyeon, Y.-S. Shim, S. Nahm, J.-S. Kim, K. S. Yoo, and C.-Y. Kang, "Self doped nanocolumnar vanadium oxides thin films for highly selective $NO_2$ gas sensing at low temperature," Sens. Actuator BChem., Vol. 241, pp. 40-47, 2017. https://doi.org/10.1016/j.snb.2016.10.029
  15. H. G. Moon, Y. R. Choi, Y.-S. Shim, K.-I. Choi, J.-H. Lee, J.-S. Kim, S.-J. Yoon, H.-H. Park, C.-Y. Kang, and H. W. Jang, "Extremely sensitive and selective NO probe based on villi-like $WO_3$ nanostructures for application to exhaled breath analyzers," ACS Appl. Mater. Interfaces, Vol. 5(21), pp. 10591-10596, 2013. https://doi.org/10.1021/am402456s
  16. H. G. Moon, Y.-S. Shim, H. Y. Jeong, M. H. Jeong, J. Y. Jung, S. M. Han, J. K. Kim, J.-S. Kim, H.-H. Park, J.-H. Lee, H. L. Tuller, S.-J. Yoon, and H. W. Jang, "Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors," Sci. Rep., Vol. 2, p. 588, 2012. https://doi.org/10.1038/srep00588
  17. J.-M. Jeon, Y.-S. Shim, S. D. Han, D. H. Kim, Y. H. Kim, C.-Y. Kang, J.-S. Kim, M. Kim, and H. W. Jang, "Vertically ordered $SnO_2$ nanobamboos for substantially improved detection of volatile reducing gases," J. Mater. Chem. A, Vol. 3(35), pp. 17939-17945, 2015. https://doi.org/10.1039/C5TA03293H
  18. D. H. Kim, D. M. Andoshe, Y.-S. Shim, C.-W. Moon, W. Sohn, S. Choi, T. L. Kim, M. Lee, H. Park, K. Hong, K. C. Kwon, J. M. Suh, J.-S. Kim, J.-H. Lee, and H. W. Jang, "Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces", ACS App. Mater. Interfaces, Vol 8(36), pp. 23793-23800, 2016. https://doi.org/10.1021/acsami.6b05366
  19. H. Masuda, and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, Vol. 268, pp. 1466-1468, 1995. https://doi.org/10.1126/science.268.5216.1466
  20. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, "Formation of Titanium Oxide Nanotube," Langmuir, Vol. 14, pp. 3160-3163, 1998. https://doi.org/10.1021/la9713816
  21. W. Wei, J. M. Macak, P. Schmuki, "High aspect ratio ordered nanoporous $Ta_2O_5$ films by anodization of Ta," Electrochem. Commun., Vol. 10, pp. 428-432, 2008. https://doi.org/10.1016/j.elecom.2008.01.004
  22. T. J. LaTempa, X. J. Feng, M. Paulose, and C. A. Grimes, "Temperature-Dependent Growth of Self-Assembled Hematite (${\alpha}$-$Fe_2O_3$) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties," J. Phys. Chem. C, Vol. 113, pp. 16293-16298, 2009. https://doi.org/10.1021/jp904560n
  23. P. Roy, S. Berger, and P. Schmuki. "$TiO_2$ nanotubes: synthesis and applications," Angew. Chem. Int. Edit., Vol. 50, (13), pp. 2904-2939, 2011. https://doi.org/10.1002/anie.201001374
  24. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T, Tamamura, "Highly ordered nanochannel-array architecture in anodic alumina," Appl. Phys. Lett. Vol. 71(19), pp. 2770-2772, 1997. https://doi.org/10.1063/1.120128
  25. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, "Anodic growth of highly ordered $TiO_2$ nanotube arrays to 134 ${\mu}m$ in length." J. Phys. Chem. B, Vol. 110(33), pp. 16179-16184, 2006. https://doi.org/10.1021/jp064020k
  26. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, "Titanium oxide nanotube arrays prepared by anodic oxidation," J. Mater. Res., Vol. 16(12), pp. 3331-3334, 2001. https://doi.org/10.1557/JMR.2001.0457
  27. Y. Kwon, H. Kim, S. Lee, I. J. Chin, T. Y. Seong, W. I. Lee, and C. Lee, "Enhanced ethanol sensing properties of $TiO_2$ nanotube sensors," Sens. Actuator B-chem., Vol. 173, pp. 441-446, 2012. https://doi.org/10.1016/j.snb.2012.07.062
  28. H. F. Lu, F. Li, G. Liu, Z. G. Chen, D. W. Wang, H. T. Fang, G. Q. Lu, Z. H. Jiang, and H. M. Cheng, "Amorphous $TiO_2$ nanotube arrays for low-temperature oxygen sensors," Nanotechnology, Vol.19(40), pp. 405504, 2008. https://doi.org/10.1088/0957-4484/19/40/405504
  29. E. Sennik, Z. Colak, N. KilinC, and Z. Z. Ozturk, "Synthesis of highly-ordered $TiO_2$ nanotubes for a hydrogen sensor," Int. J. Hydrogen Energy, Vol. 35(9), pp. 4420-4427, 2010. https://doi.org/10.1016/j.ijhydene.2010.01.100
  30. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, "Hydrogen sensing using titania nanotubes," Sens. Actuator B-Chem., Vol. 93(1), pp. 338-344, 2003. https://doi.org/10.1016/S0925-4005(03)00222-3
  31. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, and C. A. Grimes, "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure," Adv. Mater., Vol. 15(7-8), pp. 624-627. 2003. https://doi.org/10.1002/adma.200304586
  32. S. Joo, I. Muto, and N. Hara. "Hydrogen gas sensor using Pt-and Pd-added anodic $TiO_2$ nanotube films," J. Electrochem. Soc. Vol. 157(6), pp. J221-J226, 2010. https://doi.org/10.1149/1.3374643
  33. J. H. Jeun, and S. H. Hong, "CuO-loaded nano-porous $SnO_2$ films fabricated by anodic oxidation and RIE process and their gas sensing properties." Sens. Actuator B-Chem., Vol. 151(1), pp. 1-7, 2010. https://doi.org/10.1016/j.snb.2010.10.002
  34. R. A. Rani, A. S. Zoolfakar, J. Z. Ou, M. R. Field, M. Austin, and K. Kalantar-zadeh, "Nanoporous $Nb_2O_5$ hydrogen gas sensor," Sens. Actuator B-Chem., Vol. 176, pp. 149-156, 2013. https://doi.org/10.1016/j.snb.2012.09.028
  35. J. Kukkola, J. Maklin, N. Halonen, T. Kyllonen, G. Toth, M. Szabo, A. Schchukarev, J. P. Mikkola, H. Jantunen, and K. Kordas, "Gas sensors based on anodic tungsten oxide," Sens. Actuator B-Chem, Vol. 153(2), pp. 293-300, 2011. https://doi.org/10.1016/j.snb.2010.10.043
  36. D. H. Kim, Y.-S. Shim, H. G. Moon, H. J. Chang, D. Su, S.Y. Kim, J.-S. Kim, B. K. Ju, S.-J. Yoon, and H. W. Jang, "Highly Ordered $TiO_2$ Nanotubes on Patterned Substrates: Synthesis in-Place for Ultrasensitive Chemiresistors," J. Phys. Chem. C, Vol. 117(34), pp. 17824-17831, 2013. https://doi.org/10.1021/jp405150b
  37. D. H. Kim, Y.-S. Shim, J.-M. Jeon, H. Y. Jeong, S. S. Park, Y.-W. Kim, J.-S. Kim, J.-H. Lee, and H. W. Jang, "Vertically Ordered Hematite Nanotube Array as an Ultrasensitive and Rapid Response Acetone Sensor," ACS Appl. Mater. Interfaces, Vol. 6(17), pp. 14779-14784, 2014. https://doi.org/10.1021/am504156w
  38. D. H. Kim, Y.-S. Shim, and H. W. Jang, "Synthesis of Au- Decorated $TiO_2$ Nanotubes on Patterned Substrates for Selective Gas Sensor," J. Sens. Sci. Tech., Vol. 23(5), pp. 305-309, 2014. https://doi.org/10.5369/JSST.2014.23.5.305