DOI QR코드

DOI QR Code

Numerical Simulation of Ground-Penetrating Radar Signals for Detection of Metal Pipes Buried in Inhomogeneous Grounds

비균일 지하에 매설된 금속관 탐지를 위한 지하탐사레이다 신호의 수치 모의계산

  • Hyun, Seung-Yeup (School of Electrical, Electronic, Telecommunication and Computer Engineering, Jeju National University)
  • 현승엽 (제주대학교 전기전자통신컴퓨터공학부)
  • Received : 2017.10.30
  • Accepted : 2017.12.22
  • Published : 2018.01.31

Abstract

The effects of subsurface inhomogeneities on the detection of buried metal pipes in ground-penetrating radar(GPR) signals are investigated numerically. To model the electrical properties of the subsurface inhomogeneities, the continuous random media(CRM) generation technique is introduced. For the electromagnetic simulation of GPR signals, the finite-difference time-domain(FDTD) method is implemented. As a function of the standard deviation and the correlation length of the relative permittivity distribution for a randomly inhomogeneous ground, the GPR signals of the buried metal pipes are compared using numerical simulations. As the subsurface inhomogeneities increase, the GPR signals of the buried pipes are distorted because of the effect of the subsurface clutter.

지하의 비균일성이 지하탐사레이다(GPR) 신호에서 금속관 탐지에 미치는 영향을 수치계산으로 조사하였다. 지하의 비균일성을 모델링하기 위해서 연속적인 랜덤 매질(CRM) 생성기법을 도입하였고, GPR 신호의 전자기 모의계산을 위해 유한차분시간영역(FDTD)법을 구현하였다. 랜덤 비균일 지하에 대한 상대 유전율 분포의 표준편차와 상관길이의 변화에 따라 매설된 금속관의 GPR 신호를 수치 모의계산으로 비교하였다. 지하의 비균일성이 증가함에 따라 지하 클러터의 영향으로 인하여 매설관에 의한 GPR 신호가 심하게 왜곡되었다.

Keywords

References

  1. D. J. Daniels, D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar," Communications, Radar and Signal Processing, IEE Proceedings F, vol. 135, no. 4, pp. 278-320, Aug. 1988.
  2. D. J. Daniels, Ground Penetrating Radar, 2nd ed. London, The Institution of Electrical Engineers (IEE), 2004.
  3. 현승엽, "매설관 주변 지하 공동 탐지를 위한 지하 탐사 레이다의 모의실험," 한국전자파학회논문지, 27(2), pp. 131-137, 2016년 2월. https://doi.org/10.5515/KJKIEES.2016.27.2.131
  4. G. Alsharahi, A. M. M. Mostapha, A. Faize, and A. Driouach, "Modeling and simulation resolution of groundpenetrating radar antennas," Journal of Electromagnetic Engineering and Science, vol. 16, no. 3, pp. 182-190, Jul. 2016. https://doi.org/10.5515/JKIEES.2016.16.3.182
  5. 현승엽, "지하 매설관 탐지를 위한 지하탐사레이다 신호의 특성에 관한 연구," 한국전자파학회논문지, 28(1), pp. 42-48, 2017년 1월. https://doi.org/10.5515/KJKIEES.2017.28.1.42
  6. L. Gurel, U. Oguz, "Simulations of ground-penetrating radars over lossy and heterogeneous grounds," IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 6, pp. 1190-1197, Jun. 2001. https://doi.org/10.1109/36.927440
  7. C. D. Moss, F. L. Teixeira, Y. E. Yang, and J. A. Kong, "Finite-difference time-domain simulation of scattering from objects in continuous random media," IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 1, pp. 178-186, Jan. 2002. https://doi.org/10.1109/36.981359
  8. L. Klimes, "Correlation functions of random media," Pure and Applied Geophysics, vol. 159, no. 7-8, pp. 1811-1831, Jul. 2002. https://doi.org/10.1007/s00024-002-8710-2
  9. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Boston, Artech House, 2005.
  10. J. A. Roden, S. D. Gedney, "Convolution PML(CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, vol. 27, no. 5, pp. 334-339, Dec. 2000. https://doi.org/10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
  11. B. Cagnoli, T. J. Ulrych, "Singular value decomposition and wavy reflections in ground-penetrating radar images of base surge deposits," Journal of Applied Geophysics, vol. 48, no. 3, pp. 175-182, Oct. 2001. https://doi.org/10.1016/S0926-9851(01)00089-1