DOI QR코드

DOI QR Code

Estimation of the Ratio of Nonlinear Optical Tensor Components by Measuring Second Harmonic Generation and Parametric Down Conversion Outputs in a Single Periodically Poled LiNbO3 Crystal

  • Kumar, CH. S.S. Pavan (Department of Physics, Pusan National University) ;
  • Kim, Jiung (Department of Physics, Pusan National University) ;
  • Kim, Byoung Joo (Department of Physics, Pusan National University) ;
  • Cha, Myoungsik (Department of Physics, Pusan National University)
  • Received : 2018.09.10
  • Accepted : 2018.11.13
  • Published : 2018.12.25

Abstract

Measurement of the nonlinear optical coefficients is not an easy task since it requires complicated experimental setup and analysis. We suggest an easy way to estimate the relative nonlinear optical tensor components by direct measurement of the output powers of the second harmonic generation and spontaneous parametric down conversion experiments. The experiments were done in quasi-phase-matched type-0 as well as type-1 interactions at similar pump wavelengths in a 5% MgO-doped periodically poled $LiNbO_3$ crystal to obtain the ratio of the nonlinear optical tensor components $d_{33}/d_{31}$ in each experiment. The obtained ratios were then compared with the previously ascertained values [J. Opt. Soc. Am. B, 14, 2268-2294 (1997)].

Keywords

KGHHD@_2018_v2n6_606_f0001.png 이미지

FIG. 1. Schematic of the experimental setup (a), and polarization configurations (b): (i) type-0 SHG, (ii) type-1 SHG, (iii) type-0 SPDC and (iv) type-1 SPDC. Gray arrows: propagation direction along x-axis, blue arrows and crossed circles: polarization directions.

KGHHD@_2018_v2n6_606_f0002.png 이미지

FIG. 2. SHG power versus temperature for type-0 pumped at 990.6 nm (left) and type-1 pumped at 970.8 nm (right). Open triangles: type-0 data, open squares: type-1 data, dots: Type-0 (red), Type-1 (blue) QPM bands calculated based on Sellmeier equations [15] for fifteen different wavelengths within each input fundamental band.

KGHHD@_2018_v2n6_606_f0003.png 이미지

FIG. 3. Type-0 QPM SPDC spectrum pumped at 495.3 nm, 53℃ (a), and type-1 QPM SPDC spectrum pumped at 485.4 nm, 122℃ (b). Open triangles: data. Dots: QPM bands calculated based on Sellmeier equations [15] for thirty different wavelengths within the input fundamental bands. The cut-off of Si-APD starts from ~1050 nm.

TABLE 2. Parameters used in the estimation of (d33/d31)-ratio from the measured SPDC output

KGHHD@_2018_v2n6_606_t0002.png 이미지

TABLE 1. Parameters used in the estimation of (d33/d31)-ratio from the measured SHG output

KGHHD@_2018_v2n6_606_t0003.png 이미지

References

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of optical harmonics," Phys. Rev. Lett. 7, 118-120 (1961). https://doi.org/10.1103/PhysRevLett.7.118
  2. J. R. Schewesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, "Pyro-electrically induced photorefractive damage in magnesium-doped lithium niobate crystals," J. Opt. Soc. Am. B. 28, 1973-1987 (2011). https://doi.org/10.1364/JOSAB.28.001973
  3. H.-H. Lim, O. Prakash, B.-J. Kim, K. Pandiyan, M. Cha, and B. K. Rhee, "Ultra-broadband optical parametric generation and simultaneous RGB generation in periodically poled lithium niobate," Opt. Express 15, 18294-18299 (2007). https://doi.org/10.1364/OE.15.018294
  4. Y. Gan, Y. Lu, Q. Xu, and C. Q. Xu, "Compact integrated green laser module for Watt-level display applications," IEEE Photon. Technol. Lett. 25, 75-77 (2013). https://doi.org/10.1109/LPT.2012.2226938
  5. A. Barh, P. T. Lichtenberg, and C. Pederson, "Thermal noise in mid-infrared broadband upconversion detectors," Opt. Express 26, 3249-3259 (2018). https://doi.org/10.1364/OE.26.003249
  6. D. A. Bryan, R. Gerson, and H. E. Tomaschke, "Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984). https://doi.org/10.1063/1.94946
  7. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Watt-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm," Opt. Express 13, 6772-6776 (2005). https://doi.org/10.1364/OPEX.13.006772
  8. H. Furuya, A. Morikawa, K. Mizuuchi, and K. Yamamoto, "High-beam-quality continuous wave 3W green-light generation in bulk periodically poled MgO:$LiNbO_3$," Jpn. J. Appl. Phys. 45, 6704-6707 (2006). https://doi.org/10.1143/JJAP.45.6704
  9. R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer, "Absolute and relative nonlinear optical coefficients of KDP, KD*P, $BaB_2O_4$, $LiIO_3$, MgO:$LiNbO_3$, and KTP measured by phase-matched second-harmonic generation," IEEE J. Quantum Electron. 26, 922-933 (1990). https://doi.org/10.1109/3.55534
  10. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997). https://doi.org/10.1364/JOSAB.14.002268
  11. R. C. Miller, W. A. Nordland, and P. M. Bridenbaugh, "Dependence of second-harmonic-generation coefficients of $LiNbO_3$ on melt composition," J. Appl. Phys. 42, 4145-4147 (1971). https://doi.org/10.1063/1.1659746
  12. M. M. Choy and R. L. Byer, "Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals," Phys. Rev. B 14, 1693-1706 (1976). https://doi.org/10.1103/PhysRevB.14.1693
  13. H. Vanherzeele and J. D. Bierlein, "Magnitude of the nonlinear-optical coefficients of $KTiOPO_4$," Opt. Lett. 17, 982-984 (1992). https://doi.org/10.1364/OL.17.000982
  14. E. C. Cheung, K. Koch, G. T. Moore, and J. M. Liu, "Measurements of second-order nonlinear optical coefficients from the spectral brightness of parametric fluorescence," Opt. Lett. 19, 168-170 (1994). https://doi.org/10.1364/OL.19.000168
  15. O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric $LiNbO_3$," Appl. Phys. B, 91, 343-348 (2008). https://doi.org/10.1007/s00340-008-2998-2
  16. V. G. Dmitreiv, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999).
  17. N. Umemura and D. Matsuda, "Thermo-optic dispersion formula for the ordinary wave in 5 mol% MgO doped $LiNbO_3$ and its application to temperature insensitive secondharmonic generation," Opt. Commun. 367, 167-173 (2016). https://doi.org/10.1016/j.optcom.2016.01.007
  18. N. Umemura, D. Matsuda, T. Mizuno, and K. Kato, "Sellmeier and thermo-optic dispersion formulas for the extraordinary ray of 5 mol% MgO-doped congruent $LiNbO_3$ in the visible, infrared, and terahertz regions," Appl. Opt. 53, 5726-5732 (2014). https://doi.org/10.1364/AO.53.005726
  19. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). https://doi.org/10.1109/3.161322