DOI QR코드

DOI QR Code

A Study on the Control System of Plant Growth Using IT Convergence Technology

IT 융합기술을 이용한 식물생장 제어시스템 연구

  • Kim, Min-Soo (Dept. of Aviation Information & Communication Engineering, Kyungwoon University) ;
  • Jee, Seung-Wook (Dept. of Fire Protection and Engineering, Kangwon National University) ;
  • Kim, Min-Kyu (Dept. of Automation System(Ulsan Campus), Korea Polytechnics) ;
  • Cho, Young-Chang (Dept. of Aviation Information & Communication Engineering, Kyungwoon University)
  • Received : 2018.11.27
  • Accepted : 2018.12.10
  • Published : 2018.12.31

Abstract

In this study, a study is conducted on a monitoring system that can control the environment of plants using sensors in conjunction with the LED light system and the plant growth control system. To verify the performance of the developed plant growth system, an experiment was conducted on the characteristics of energy efficiency, data transmission rate, and light volume control. The experiment resulted in a satisfactory result by controlling more than 80% energy efficiency, 1Mb/sec wireless communication speed, and 5 levels of optical control. The proposed system can be applied to LED plant facilities and will contribute to the automation of agriculture by organizing an automated system for production efficiency and labor cost reduction for future commercialization.

본 연구에서는 LED 광시스템과 식물생장제어시스템을 연계하여 센서를 이용하여 식물환경을 제어 가능한 모니터링시스템에 대한 연구이다. 시스템의 성능을 검증하기 위해 에너지효율, data 전송률, 광량제어 특성에 대한 실험을 실시하였다. 실험한 결과 에너지 효율은 80%이상, 무선통신속도가 1Mb/sec이고 광량제어를 5단계이상 조절 가능함으로써 만족한 결과를 얻었다. 제안된 시스템은 LED 식물공장설비에 적용가능하며, 향후 상용화를 위해서는 생산효율 및 노동비 절감을 위한 자동시스템을 구성하여 농업 자동화설비에 기여할 것이다.

Keywords

JGGJB@_2018_v22n4_959_f0001.png 이미지

Fig. 1. Composition of environmental control system for plant growth control. 그림 1. 식물성장조절용 환경제어시스템 구성

JGGJB@_2018_v22n4_959_f0002.png 이미지

Fig. 2. LED bar for plant growth. 그림 2. 식물생장용 LED bar

JGGJB@_2018_v22n4_959_f0003.png 이미지

Fig. 3. Controller module. 그림 3. 제어기 모듈

JGGJB@_2018_v22n4_959_f0004.png 이미지

Fig. 4. Control module plant growth environment analysis system. 그림 4. 제어 모듈 식물생장 환경분석 시스템

JGGJB@_2018_v22n4_959_f0005.png 이미지

Fig. 5. Implementation of the control module plant growth environment analysis system. 그림 5. 제어 모듈 식물생장 환경 분석시스템의 실행

JGGJB@_2018_v22n4_959_f0006.png 이미지

Fig. 6. Power control module for temperature and humidity control of plant growth environment analysis system. 그림 6. 식물생장 환경 분석시스템의 온·습도 조절용 전원 제어 모듈

JGGJB@_2018_v22n4_959_f0007.png 이미지

Fig. 7. Experimental result of output power(62.4 W). 그림 7. 출력전력:62.4 W(DC 244 V × 2.6 A)실험 결과

JGGJB@_2018_v22n4_959_f0008.png 이미지

Fig. 8. Experimental result of data transmission. 그림 8. 데이터 전송실험결과

Table 1. Light volume sensor specifications. 표 1. 광량 센서 사양(Si1147)

JGGJB@_2018_v22n4_959_t0001.png 이미지

Table 2. CO2 sensor module specification. 표 2. CO2 센서 모듈 사양

JGGJB@_2018_v22n4_959_t0002.png 이미지

Table 3. Light control using six step. 표 3. 6 step을 이용한 광량제어

JGGJB@_2018_v22n4_959_t0003.png 이미지

References

  1. F. Ijaz, A. Siddiqui, B. Im and C. Lee, "Remote management and control system for LED based plant factory using ZigBee and internet," 2012 14th International Conference on Advanced Communication Technology(ICACT), pp.942-946, 2012.
  2. A. Harun, R. Ahmad and N. Mohamed, "WSN application in LED plant factory using continuous lighting (CL) method," 2015 IEEE Conference on Open Systems(ICOS), pp.56-61, 2015. DOI:10.1109/ICOS.2015.7377278
  3. K. Kim, K. Park, J. Kim, M. Jang and E. Kim, "Establishment of Web-based Remote Monitoring System for Greenhouse Environment," 2012 Journal of the Korea Institute of Electronic Communication Science, vol.6, no.1, pp.77-83, 2011. DOI:10.13067/JKIECS.2011.6.1.077
  4. U. Yeo, I. Lee, K. Kwon, T. Ha, S. Park, R. Kim and S. Lee, "Analysis of Research Trend and Core Technologies based on ICT to Materialize Smart-farm," Journal of Protected Horticulture and Plant Factory, vol.25, no.1, pp. 30-41, 2016. DOI:10.12791/KSBEC.2016.25.1.30
  5. I. Jafa. K. Raihana, S. Bhowmik and S. R. Shakil, "Wireless monitoring system and controlling software for Smart Greenhouse Management," 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pp.1-5, 2014. DOI:10.1109/ICIEV.2014.6850748
  6. S. Joo, et al., "A middleware with efficient memory management technique and advanced structure for M2M network," J. KIIT, vol.12, no.6, pp.101-108, 2014. DOI:10.14801/kiitr.2014.12.6.101
  7. P. Limprasitwong and C. Thongchaisuratkrul, "Plant Growth Using Automatic Control System under LED, Grow, and Natural Light," 2018 5th International Conference on Advanced informatics: Concept Theory and Applications, 2018. DOI:10.1109/ICAICTA.2018.8541308
  8. M. Fakaim, K. Banlupholsakul and K. Khongseeprai, "Case Study of Automatic Plants Watering System Using Solar Energy for Rice Breeding Plan," Journal of Industrial Technology, Ubon Ratchathani, vol.1, pp.55-66, 2016.
  9. Q. Zhang, et al., "A wireless solution for greenhouse monitoring and control system based on ZigBee technology," J. 1584 Zhejiang Univ. Sci., vol.8, no.10, pp.1584-1587, 2007. DOI:10.1631/jzus.2007.A1584
  10. M. Wada, K. Shimazaki, and M. Iino, Light Sensing in Plants, Springer, 2005.
  11. K. Seo, et al., "Design of adaptive neurofuzzy inference system based automatic control system for integrated environment management of ubiquitous plant factory," J. Bio-Environ. Control, vol.20, no.3, pp.169-175, 2011.
  12. E. Lee, et al., "Development of agriculture environment monitoring system using integrated sensor module," J. of Korea cont. Assoc., vol.10, no.2, pp.63-71, 2010. DOI:10.5392/JKCA.2010.10.2.063