DOI QR코드

DOI QR Code

Study on Oxygen Evolution Reaction of Ni-Zn-Fe Electrode for Alkaline Water Electrolysis

알칼라인 수전해용 Ni-Zn-Fe 전극의 산소 발생 반응 특성

  • Received : 2018.10.30
  • Accepted : 2018.12.30
  • Published : 2018.12.30

Abstract

The overall efficiency depend on the overpotential of the oxygen evolution reaction in alkaline water electrolysis. Therefore, it is necessary to research to reduce the oxygen evolution overpotential of electrodes. In this study, Ni-Zn-Fe electrodes were prepared by electroplating and the surface area was increased by Zn leaching process. Electroplating variables were studied to optimize the plating parameters(electroplating current density, pH value of electroplating solution, Ni/Fe content ratio). Ni-Zn-Fe electrode, which is electroplated in a modified Watts bath, showed 0.294 V of overpotential at $0.1A/cm^2$. That result is better than that of Ni and Ni-Zn plated electrodes. As the electroplating current density of the Ni-Zn-Fe electrode increased, the particle size tended to increase and the overpotential of oxygen evolution reaction decreased. As reducing pH of electroplating solution from 4 to 2, Fe content in electrode and activity of oxygen evolution reaction decreased.

Keywords

SSONB2_2018_v29n6_549_f0001.png 이미지

Fig. 1. I-E curve (CV) for Ni in Watts bath, A bath and B1 bath, scan rate 5 mV/s at 50℃

SSONB2_2018_v29n6_549_f0002.png 이미지

Fig. 2. XRD patterns of the Ni-Zn-Fe electrode (B1 bath) surface prepared by electrodeposition (a) as prepared (b) after leaching

SSONB2_2018_v29n6_549_f0003.png 이미지

Fig. 3. SEM images of the Ni-Zn-Fe electrode (B1 bath) surface prepared by electrodeposition (a) as prepared (b) after leaching

SSONB2_2018_v29n6_549_f0004.png 이미지

Fig. 4. I-E curve (LSV) of the electrodes prepared by electrodeposition in watts bath, A bath and B1 bath, scan rate 0.1 mV/s at 25℃ (1 M KOH)

SSONB2_2018_v29n6_549_f0005.png 이미지

Fig. 6. SEM images of the Ni-Zn-Fe electrodes (B1 bath) surface prepared by electrodeposition with different current densities (a) 70, (b) 100, and (c) 130 mA/cm2

SSONB2_2018_v29n6_549_f0006.png 이미지

Fig. 7. I-E curve (LSV) of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition with different current densities, scan rate 0.1 mV/s at 25℃ (1 M KOH)

SSONB2_2018_v29n6_549_f0007.png 이미지

Fig. 8. SEM images of the Ni-Zn-Fe electrodes (B1 bath) surface prepared by electrodeposition (a) 70 mA/cm2, 2,000 s and (b) 130 mA/cm2, 1,077 s

SSONB2_2018_v29n6_549_f0008.png 이미지

Fig. 9. I-E curve (LSV) of the Ni-Zn-Fe electrodes (B1 bath) prepared by on electrodeposition, scan rate 0.1 mV/s at 25℃ (1 M KOH)

SSONB2_2018_v29n6_549_f0009.png 이미지

Fig. 10. SEM images of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition with different pH value of B bath (a) pH2 and (b) pH4

SSONB2_2018_v29n6_549_f0010.png 이미지

Fig. 11. I-E curve (LSV) of the Ni-Zn-Fe electrodes prepared by electrodeposition with different pH value of B1 bath and scan rate 0.1 mV/s at 25℃ (1 M KOH)

SSONB2_2018_v29n6_549_f0011.png 이미지

Fig. 13. I-E curve (LSV) of the Ni-Zn-Fe electrodes prepared by electrodeposition with different Ni, Fe composition of B bath and scan rate 0.1 mV/s at 25℃ (1 M KOH)

SSONB2_2018_v29n6_549_f0012.png 이미지

Fig. 5. SEM images showing the surface morphology of electrodeposited Ni-Zn-Fe (B1 bath) in Hull cell, corresponding current density of (a) 20, (b) 60, and (c) 100 mA/cm2

SSONB2_2018_v29n6_549_f0013.png 이미지

Fig. 12. SEM images of the Ni-Zn-Fe electrodes surface prepared by electrodeposition with different Ni, Fe composition of B bath (a, b) Ni11Fe1 and (c, d) Ni1Fe1 and (a, c) with low magnification (2,000) and (b, d) with high magnification (10,000)

Table 1. Composition of electrodeposition baths (g/L)

SSONB2_2018_v29n6_549_t0001.png 이미지

Table 2. Elemental composition results of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition (weight%)

SSONB2_2018_v29n6_549_t0002.png 이미지

Table 3. Elemental composition results of electrodeposited Ni-Zn-Fe (B1 bath) in Hull cell, corresponding current density (weight%)

SSONB2_2018_v29n6_549_t0003.png 이미지

Table 4. Elemental composition results of the Ni-Zn-Fe electrodes (B1 bath) prepared by electrodeposition with different current densities (weight%)

SSONB2_2018_v29n6_549_t0004.png 이미지

Table 5. Elemental composition results of the Ni-Zn-Fe electrodes (B1 bath) prepared by ectrodeposition (weight%)

SSONB2_2018_v29n6_549_t0005.png 이미지

Table 6. Elemental composition results of the Ni-Zn-Fe electrodes prepared by electrodeposition with different pH value of B1 bath (weight%)

SSONB2_2018_v29n6_549_t0006.png 이미지

Table 7. Elemental composition results of the Ni-Zn-Fe electrodes prepared by electrodeposition with different Ni, Fe composition of B1 bath and B2 bath (weight%)

SSONB2_2018_v29n6_549_t0007.png 이미지

References

  1. D. M. F. Santos and C. A. C. Sequeira, "Hydrogen production by alkaline water electrolysis", Quim Nova, Vol. 36, No. 8, 2013, pp. 1176-1193. https://doi.org/10.1590/S0100-40422013000800017
  2. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Few, "Future cost and performance of water electrolysis: An expert elicitation study", Int. J. Hydrogen Energy, Vol. 42, 2017, pp. 30470-30492. https://doi.org/10.1016/j.ijhydene.2017.10.045
  3. J. H. Kim, D. H. Youn, K. Kawashima, J. Lin, and H. Lim, "An active nanoporous Ni(Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media", Appl. Catal. B, Environmental, Vol. 225, 2018, pp. 1-7. https://doi.org/10.1016/j.apcatb.2017.11.053
  4. M. Gong and H. Dai, "A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts", Nano Res., Vol. 8, No. 1, 2015, pp. 23-39. https://doi.org/10.1007/s12274-014-0591-z
  5. X. Li, F. C. Walsh, and D. Pletcher, "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysis", Phys. Chem. Chem. Phys., Vol. 13, 2011, pp. 1162-1167. https://doi.org/10.1039/C0CP00993H
  6. S. Klaus, Y. Cai, M. W. Louie, L. Trotochaoud, and A. T. Bell, "Effect of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity", J. Phys. Chem., Vol. 119, 2018, pp. 7243-7254.
  7. F. J. Perez-Alonso, C. Adan, S. Rojas, M. A. Pena, and J. L. G. Fierro, "Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium", Int. J. Hydrogen Energy, Vol. 39, 2014, pp. 5204-5212. https://doi.org/10.1016/j.ijhydene.2013.12.186
  8. M. M. Abou-Krisha, F. H. Assaf, and S. A. El-Naby, "Electrodeposition behavior of zinc-nickel-iron alloys from sulfate bath", J. Coat. Technol., Vol. 6, No. 3, 2009, pp. 391-399. https://doi.org/10.1007/s11998-008-9134-4
  9. S. Basavanna and Y. A. Naik, "Electrochemical studies of Zn-Ni alloy coatings from acid chloride bath", J. Appl. Electrochem., Vol. 39, 2009, pp. 1975-1982. https://doi.org/10.1007/s10800-009-9907-1
  10. M. M. Abou-Krisha, "Effect of pH and current density on the electrodeposition of Zn-Ni-Fe alloys from a sulfate bath", J. Coat. Technol. Res., Vol. 9, No. 6, 2012, pp. 775-783. https://doi.org/10.1007/s11998-012-9402-1
  11. X. Wang, Z. Wang, W. Yang, T. Wang, and Q. Chen, "Fabrication of $Co_2Ni_8$/CNTs alloy hollow-nanostructured microspheres:facile synthesis and magnetic properties", J. Supercond. Nov. Magn., Vol. 29, 2016, pp. 343-347. https://doi.org/10.1007/s10948-015-3231-2
  12. S. Y. Lee, H. Jung, S. Y. Chae, H. S. Oh, B. K. Min, and Y. J. Hwang, "Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with modified carbon supports", Electrochim. Acta, Vol. 281, 2018, pp. 684-691. https://doi.org/10.1016/j.electacta.2018.05.170
  13. R. K. Shervedani and A. Lasia, "Evaluation of the surface roughness of microporous Ni-Zn-P electrodes by in situ methods", J. Appl. Electrochem., Vol. 29, 1999, pp. 979-986. https://doi.org/10.1023/A:1003577631897
  14. M. Lukaszewski, M. Soszko, and A. Czerwinski, "Electrochemical methods of real surface area determination of noble metal electrodes-an overview", Int. J. Electrochem. Sci., Vol. 11, 2016, pp. 4442-4469.
  15. R. Winand, "Electrodeposition of metals and alloys-new result and persepctives", Electrochim. Acta, Vol. 39, No. 8-9, 1994, pp. 1091-1105. https://doi.org/10.1016/0013-4686(94)E0023-S
  16. A. M. Rashidi and A. Amadeh, "The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings", Surface & Coatings Technology, Vol. 202, 2008, pp. 3772-3776. https://doi.org/10.1016/j.surfcoat.2008.01.018
  17. A. A. Rasmussen, P. Moller, and M. A. J. Somers, "Microstructure and thermal stability of nickel layers electrodepositied from an addictive-free sulphamate-based electrolyte", Surf. Coat. Technol., Vol. 200, 2006, pp. 6037-6046. https://doi.org/10.1016/j.surfcoat.2005.09.019
  18. N. Todoroki and T. Wadayama, "Oxygen redcution and oxygen evolution reaction activity on Co/Pt(111) surface in alkaline solution", ECS. Trans., Vol. 86, No. 13, 2018, pp. 569-574. https://doi.org/10.1149/08613.0569ecst
  19. T. Borucinski, S. Rausch, and H. Wendt, "Raney nickel activated $H_2$-cathodes Part II: Correlation of morphology and effective catalytic activity of Raney-nickel coated cathodes", J. Appl. Electrochem., Vol. 22, 1992, pp. 1031-1038. https://doi.org/10.1007/BF01029581
  20. A. K. Chaudhari and V. B. Singh, "A review of fundamental aspects, characterization and application of electrodeposited nanocrystalline iron group metals, Ni-Fe alloy and oxide ceramics reinforced nanocomposite coatings", J. Alloys Compd., Vol. 751, 2018, pp. 194-214. https://doi.org/10.1016/j.jallcom.2018.04.090
  21. S. L. Diaz, O. R. Mattos, O. E. Barcia, F. J. F. Miranda, "ZnFe anomalous electrodeposition: stationaries and local pH measurements", Electrochim. Acta, Vol. 47, 2002, pp. 4091-4100. https://doi.org/10.1016/S0013-4686(02)00416-4
  22. S. Ando, "Electrodeposition behavior of Zn-Ni alloys produced from sulfate solutions at high current densities", Materials Transactions, Vol. 57, No. 11, 2016, pp. 1908-1914. https://doi.org/10.2320/matertrans.M2016253
  23. E. Potvin and L. Brossard, "Electrocatalytic activity of Ni-Fe anodes for alkaline water electrolysis", Mater. Chem. Phys., Vol. 31, 1992, pp. 311-318. https://doi.org/10.1016/0254-0584(92)90192-B
  24. M. W. Louie and A. T. Bell, "An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen", J. Am. Chem. Soc., Vol. 135, 2013, pp. 12329-12337. https://doi.org/10.1021/ja405351s