DOI QR코드

DOI QR Code

Synthesis and Characterization of Polybenzimidazole Random Copolymers Containing Methylene Chain for High Temperature PEMFC

고온 PEMFC용 메틸렌 사슬을 포함하는 폴리벤즈이미다졸 랜덤 공중합체의 합성과 특성 분석

  • HAN, DAEUN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
  • 한다은 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 및 수소.연료전지 연구센터) ;
  • 유동진 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 및 수소.연료전지 연구센터)
  • Received : 2018.10.09
  • Accepted : 2018.12.30
  • Published : 2018.12.30

Abstract

In this study, we prepared the modified PBI random copolymer to reduce the problems of the pristine PBI about low solubility and proton conductivity. The random copolymer was synthesized from suberic acid, 5-aminoisophthalic acid, and 3,3'-diaminobenzidine to obtain $X_1Y_9$, $X_1Y_1$, $X_9Y_1$. Then, the membrane was fabricated by using solvent casting method with methanesulfonic acid at $140^{\circ}C$. Subsequently, the membrane was doped with phosphoric acid at $40^{\circ}C$. The chemical structure of the polymers was characterized by FT-IR. In addition, the physiochemical properties of the PBI were investigated by TGA, oxidative stability, acid uptake. Finally, the proton conductivity was measured at $100-180^{\circ}C$ without humidification. As the result, $X_1Y_9$ PBI random copolymer membrane showed higher conductivity.

Keywords

SSONB2_2018_v29n6_578_f0001.png 이미지

Fig. 1. Structures of (1) polybenzimidazole random copolymer (XY) and (2) m-polybenzimidazole (m-PBI) polymer.

SSONB2_2018_v29n6_578_f0002.png 이미지

Fig. 2. FT-IR spectroscopy of the PBI random copolymers: (A) X1Y9, (B) X1Y1, (C) X9Y1, and (D) m-PBI.

SSONB2_2018_v29n6_578_f0003.png 이미지

Fig. 3. TGA curves of the PBI copolymers: (A) X1Y9, (B) X1Y1, (C) X9Y1, and (D) m-PBI.

SSONB2_2018_v29n6_578_f0004.png 이미지

Fig. 4. Acid uptake of the PBI polymers: (a) X1Y9, (b) X1Y1, (c) X9Y1, and (d) m-PBI.

SSONB2_2018_v29n6_578_f0005.png 이미지

Fig. 5. Oxidative stability of the PBI polymers: (A) X1Y9, (B) X1Y1, (C) X9Y1, and (D) m-PBI.

SSONB2_2018_v29n6_578_f0006.png 이미지

Fig. 6. SEM images of the PBI polymers: (a) X1Y9, (b) X1Y1, (c) X9Y1, and (d) m-PBI.

SSONB2_2018_v29n6_578_f0007.png 이미지

Fig. 7. Proton conductivity of the PBI copolymers(XY): (A) X1Y9, (B) X1Y1, and (C) X9Y1.

Table 1. Solubility tests of the PBI polymers

SSONB2_2018_v29n6_578_t0001.png 이미지

Table 3. Oxidative stability of the PBI polymers

SSONB2_2018_v29n6_578_t0002.png 이미지

Table 4. EDAX results of the PBI polymers.

SSONB2_2018_v29n6_578_t0003.png 이미지

Table 2. (a) Swelling ratio and (b) acid uptake of the PBI polymersa

SSONB2_2018_v29n6_578_t0004.png 이미지

References

  1. G. J. K. Acres, "Recent advances in fuel cell technology and its applications", J. Power Sources, Vol. 100, 2001, pp. 60-66. https://doi.org/10.1016/S0378-7753(01)00883-7
  2. H. S. Lee, A. Roy, O. Lane, and J. E. McGrath, "Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells", Polymer, Vol. 49, 2008, pp. 5387-5396. https://doi.org/10.1016/j.polymer.2008.09.019
  3. Y. Shao, G. Yin, Z. Wang, and Y. Gao, "Proton exchange membrane fuel cell from low temperature to high temperature: material challenges", J. Power Sources, Vol. 167, 2017, pp. 235-242.
  4. S. Y. Lee and D. J. Yoo, "Comparison of properties of two kinds of anion exchange membranes with different functional group for alkaline fuel cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 5, 2018, pp. 458-465. https://doi.org/10.7316/KHNES.2018.29.5.458
  5. D. S. Han and D. J. Yoo, "Synthesis and properties of sulfonated poly (arylene ether sulfone) block copolymers with naphthalene moiety for polymer electrolyte fuel cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 4, 2018, pp. 331-338. https://doi.org/10.7316/KHNES.2018.29.4.331
  6. A. R. Kim, "Synthesis and characterization of fluorinated polybenzimidazole proton exchange membranes for fuel cell", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 1, 2017, pp. 24-29. https://doi.org/10.7316/KHNES.2017.28.1.24
  7. J. A. Asensio, E. M. Sanchez, and P. Gomez-Romero, "Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest", RCS Advances, Vol. 39, 2010, pp. 3210-3239.
  8. G. Gnana kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, and R. Elizabeth, "High ion and lower molecular trasportation of the poly vinylidene fluoride-hexafluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell application", J. Power Sources, Vol. 195, No. 18, 2010, pp. 5922-5928. https://doi.org/10.1016/j.jpowsour.2009.11.021
  9. A. R. Kim, "Preparation and characterization of hybrid membrane for block copolymer containing diphenyl unit increasing cationic conductivity for fuel cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 5, 2017, pp. 465-470. https://doi.org/10.7316/KHNES.2017.28.5.465
  10. X. Li, X. Chen, and B. C. Benicewicz, "Synthesis and properties of phenylindane-containing polybenzimidazole(PBI) for high-temperature polymer electrolyte membrane fuel cells(PEMFCs)", J. Power Sources, Vol. 234, 2013, pp. 796-804.
  11. R. S. Bhavsar, S. B. Nahire, M. S. Kale, S. G. Patil, P. P. Aher, R. A. Bhavsar, and U. K. Kharul, "Polybenzimidazoles based on 3,3′‐diaminobenzidine and aliphatic dicarboxylic acids: synthesis and evaluation of physicochemical properties toward their applicability as proton exchange and gas separation membrane material", J. Appl. Polym. Sci, Vol. 120, No. 2, 2011, pp. 1090-1099. https://doi.org/10.1002/app.33246
  12. Y. Ozdemir, N. Ozkan, and Y. Devrim, "Fabrication and characterization of cross-linked polybenzimidazole based membranes for high temperature PEM fuel cells", Electrochim. Acta, Vol. 245, 2017, pp. 1-13. https://doi.org/10.1016/j.electacta.2017.05.111
  13. M. Li, G. Zhang, H. Zuo, M. Han, C. Zhao, H. Jiang, Z. Liu, L. Zhang, and H. Na, "End-group cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane", J. Membr. Sci., Vol. 423-424, 2012, pp. 495-502. https://doi.org/10.1016/j.memsci.2012.08.058
  14. J. W. Lee, D. Y. Lee, H. J. Kim, S. Y. Nam, J. J. Choi, J. Y. Kim, J. H. Jang, E. A. Cho, S. K. Kim, S. A. Hong, and T. H. Lim, "Synthesis and characterization of acid-doped polybenzimidazole membranes by sol-gel and post-membrane casting method", J. Membr. Sci., Vol. 357, 2010, pp. 130-133. https://doi.org/10.1016/j.memsci.2010.04.010
  15. J. C. Chen, P. Y. Chen, S. W. Lee, G. L. Liou, C. J. Chen, Y. H. Lan, and K. H. Chen, "Synthesis of soluble polybenzimidazoles for high-temperature proton exchange membrane fuel cell (PEMFC) applications", React. Funct. Polym., Vol. 108, 2016, pp. 122-129. https://doi.org/10.1016/j.reactfunctpolym.2016.05.006
  16. A. R. Kim, M. Vinothkannan, J. S. Kim, and D. J. Yoo, "Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability", Polym. Bull., Vol. 75, No. 7, 2018, pp. 2779-2804. https://doi.org/10.1007/s00289-017-2180-2
  17. D. Aili, L. N. Cleemann, Q. Li, J. O. Jensen, E. Christensen, and N. J. Bjerrum, "Thermal curing of PBI membranes for high temperature PEM fuel cells", J. Mater. Chem., Vol. 22, 2012, pp. 5444-5453. https://doi.org/10.1039/c2jm14774b
  18. Y. Cai, Z. Yue, X. Teng, and S. Xu, "Phosphoric Acid doped crosslinked polybenzimidazole/modified graphene oxide composite membranes for high temperature proton exchange membrane applications", J. Electrochem. Soc, Vol. 165, No.11, 2018, pp. 914-920. https://doi.org/10.1149/2.0051811jes
  19. L. Wang, J. Ni, D. Liu, C. Gong, and L. Wang, "Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 43, No. 34, 2018, pp. 16694-16703. https://doi.org/10.1016/j.ijhydene.2018.06.181
  20. A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Sulfonated fluorinated multi-block copolymer hybrid containing sulfonated (poly ether ether ketone) and graphene oxide: a ternary hybrid membrane architecture for electrolyte applications in proton exchange membrane fuel cells", J. Energy Chem., Vol. 27, No. 4, 2018, pp. 1247-1260. https://doi.org/10.1016/j.jechem.2018.02.020
  21. B. Zhao, L. Cheng, Y. Bei, S. Wang, J. Cui, H. Zhu, X. Li, and Q. Zhu, "Grafted polybenzimidazole copolymers bearing polyhedraloligosilsesquioxane pendant moieties", Eur. Polym. J., 2017, Vol. 94, pp. 99-110. https://doi.org/10.1016/j.eurpolymj.2017.05.024
  22. X. Li, Z. Liu, J. Peng, C. Shi, W. Hu, Z. Jiang, and B. Liu, "Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells", J. Power Sources, Vol. 393, 2018, pp. 99-107. https://doi.org/10.1016/j.jpowsour.2018.05.011
  23. R. P. Singh, X. Li, K. W. Dudeck, B. C. Benicewicz, and K. A. Berchtold, "Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures", Polymer, Vol. 119, 2017, pp. 134-141. https://doi.org/10.1016/j.polymer.2017.04.075
  24. A. R. Kim, M. Vinothkannan, G. Gnana kumar, and D. J. Yoo, "Sulfonated graphene oxide/nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells", RSC Advances, Vol. 8, No. 14, 2018, pp. 7494-7508. https://doi.org/10.1039/C7RA12768E
  25. M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, "Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell(HT-PEMFC)", Int. J. Hydrogen Energy, Vol. 41, No. 4, 2016, pp. 2896-2910. https://doi.org/10.1016/j.ijhydene.2015.12.100
  26. G. Gnana kumar, A. R. Kim, K. S. Nahm, and D. J. Yoo, "High proton conductivity and low fuel crossover of polyvinylidene fluoride-hexafluoro propylene silica sulfuric acid composite membranes for direct methanol fuel cells", Curr. Appl. Phys., Vol. 11, No. 3, 2011, pp. 896-902. https://doi.org/10.1016/j.cap.2010.12.015
  27. B. Sana and T. Jana, "Polymer electrolyte membrane from polybenzimidazoles: Influence of tetraamine monomer structure", Polymer, Vol. 137, 2018, pp. 312-323. https://doi.org/10.1016/j.polymer.2018.01.029
  28. Z. Xia, L. Ying, J. Fang, Y. Du, W. Zhang, X. Guo, and J. Yin, "Preparation of covalently cross-linked sulfonated polybenzimidazole membranes for vanadium redox flow battery applications". J. Membr. Sci., Vol. 525, 2017, pp. 229-239. https://doi.org/10.1016/j.memsci.2016.10.050
  29. M. Vinothkannan, A. R. Kim, K. S. Nahm, and D. J. Yoo, "Tenary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: profile of improved mechanical strength, thermal stability and proton conductivity", RCS Advances, Vol. 6, No. 110, 2016, pp. 108851-108863.
  30. H. R. Jang, E. S. Yoo, R. Kannan, J. S. Kim, K. Lee, and D. J. Yoo, "Facile tailor-made enhancement in proton conductivity of sulfonated poly(ether ether ketone) by graphene oxide nanosheet for polymer electrolyte membrane fuel cell applications", Colloid. Polym. Sci., Vol. 6, No. 295, 2017, pp. 1059-1069.
  31. J. A. Mader and B. C. Benicewicz, "Synthesis and properties of random copolymers of functionalised polybenzimidazoles for high temperature fuel cells", Fuel Cells, Vol. 11, No. 2, 2011, pp. 212-221. https://doi.org/10.1002/fuce.201000080
  32. S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, L. Zhang, and H. Na, "Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 36, 2011, pp. 8412-8421. https://doi.org/10.1016/j.ijhydene.2011.03.147
  33. P. Muthuraja, S. Prakasha, V. M. Shanmugam, S. Radhakrsihnan, and P. Manisankar, "Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: Synthesis and characterizations", Int. J. Hydrogen Energy, Vol. 43, No. 9, 2018, pp. 4763-4772. https://doi.org/10.1016/j.ijhydene.2017.12.010
  34. D. C. Seel and B. C. Benicewicz, "Polyphenylquino xaline-based proton exchange membranes synthesized via the PPA Process for high temperature fuel cell systems", J. Membr. Sci., Vol. 405-406, 2012, pp. 57-67. https://doi.org/10.1016/j.memsci.2012.02.044
  35. S. Angioni, P. P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, and A. Magistris, "Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs", Int. J. Hydrogen Energy, Vol. 36, No. 12, 2011, pp. 7178-7182.
  36. S. Anand and A. Muthusamy, "Optical, thermal and electrical properties of polybenzimidazoles derived from substituted benzimidazoles", J. Mol. Struct., Vol. 1148, 2017, pp. 254-265. https://doi.org/10.1016/j.molstruc.2017.07.040