DOI QR코드

DOI QR Code

Overview of VR Media Technology and Methods to Reduce Cybersickness

가상현실 미디어 기술동향과 VR 멀미저감 방안

  • Mun, Sungchul (Future Engine Lab, CJ Hello) ;
  • Whang, Mincheol (Department of Intelligent Engineering Information for Human, Sangmyung University) ;
  • Park, Sangin (Industry-Academy Cooperation Foundation, Sangmyung University) ;
  • Lee, Dong Won (Department of Emotion Engineering, Sangmyung University) ;
  • Kim, Hong-Ik (Chief Technology Officer, CJ Hello)
  • Received : 2018.09.07
  • Accepted : 2018.10.16
  • Published : 2018.11.30

Abstract

In this study, we reviewed recent trends for enhancing human cognitive accessibility to social VR platform. We also proposed a practical method to predict VR sickness and improve the cognitive accessibility. In doing so, we investigated subtle changes in human body sway unconsciously made before, during, and after being exposed to extreme VR experience. The scientific assumption that VR sickness would be correlated with the subtle changes in body sway was validated. We found that participants who showed sensitive changes in the body sway before VR experience, felt more severe VR sickness than others. The findings can be practically applied in predicting susceptibility to VR sickness prior to VR experiences.

본 논문은 최신 가상현실 미디어 기술동향과 다양한 분야에서 시도해 온 VR 멀미저감 방안을 리뷰하여, 가상현실 사용자의 인지적 수용성을 높이는 방안에 대해 논의하였다. 이를 통해 최신 미디어 기술의 사용자 가치제안 방식을 분석하고 Social VR 플랫폼의 인지적 수용성을 개선하는 효율적 방안을 제안하였다. 생체신호 모니터링, VR 콘텐츠 적합도 분석, 멀미 메커니즘 조절, 신체동요측정 기반 멀미예측 등 다양한 멀미저감 방식 중 개발 비용과 사용자 수용성 측면에서 가장 효율적인 신체동요측정 기반 멀미예측 기술의 테스트 결과를 기술하고 적용 방안을 구체화하였다. 가상현실 체험 전 미세한 신체동요가 많은 사용자일수록 VR 멀미 민감도가 크게 증가하는 것을 확인하였다. 개인의 멀미 민감도를 반영하는 본 측정 결과를 다양한 가상현실 환경에서 테스트하고 개인특성에 따른 VR 멀미 데이터베이스를 구축한다면 AI 기반의 멀미 예측기술을 구현하는데 크게 기여할 것으로 예상된다.

Keywords

BSGHC3_2018_v23n6_800_f0001.png 이미지

그림 1. 오큘러스가 개발 중인 HMD ‘Half Dome’ 가변초점 기능 Fig. 1. Varifocal function of the Half Dome HMD Oculus has been developing

BSGHC3_2018_v23n6_800_f0002.png 이미지

그림 2. 페이스북 F8 2018에서 발표된 AI 포인트 클라우드 기반 VR 메모리즈 솔루션 Fig. 2. AI point cloud-based VR Memories announced at Facebook F8 2018

BSGHC3_2018_v23n6_800_f0003.png 이미지

그림3. 홀로렌즈용 MRTouch 인터랙션 기술 Fig. 3. MRTouch interaction developed for Microsoft Hololens

BSGHC3_2018_v23n6_800_f0004.png 이미지

그림 4. 가상현실 소셜 플랫폼 VRChat Fig. 4. VR social platform of VRChat

BSGHC3_2018_v23n6_800_f0005.png 이미지

그림 5. VR 멀미 저감 방법 Fig. 5. Methods to reduce VR sickness

BSGHC3_2018_v23n6_800_f0006.png 이미지

그림 6. 신체 동요 기반 멀미 측정 검증 실험 절차 Fig. 6. Experimental procedure to validate body sway correlates of VR sickness

BSGHC3_2018_v23n6_800_f0007.png 이미지

그림 7. 멀미 그룹 (FG)에 속한 피험자의 VR 롤러코스터 체험 전, 중, 후에 따른 신체 동요(Center of Pressure, COP) 변화 정도 시각화(위), 페달을 통해 VR 체험 중 (15분간) 보고받은 주관 멀미도 시각화(아래) Fig. 7. Visualization of changes in COP data for a representative FG subject before, during, and after being exposed to VR roller coaster content (top) and that of the subjective data reported by putting a foot pedal during VR experience (15 min.) (bottom)

BSGHC3_2018_v23n6_800_f0008.png 이미지

그림 8. 비멀미 그룹 (UFG)에 속한 피험자의 VR 롤러코스터 체험 전, 중, 후에 따른 신체 동요(Center of Pressure, COP) 변화 정도 시각화(위), 페달을 통해 VR 체험 중 (15분간) 보고받은 주관 멀미도 시각화(아래) Fig. 8. Visualization of changes in COP data for a representative UFG subject before, during, and after being exposed to VR roller coaster content (top) and that of the subjective data reported by putting a foot pedal during VR experience (15 min.) (bottom)

BSGHC3_2018_v23n6_800_f0009.png 이미지

그림 9. VR 롤러코스터 체험 전, 중, 후에 따른 신체 동요(Center of Pressure, COP) 평균 변화 정도 비교: VR 멀미를 심하게 보고한 그룹 (Fatigued Group, FG)과 그렇지 않은 그룹(Unfatigued Group, UFG) Fig. 9. Change in COP data across subjects for each group as a function of task sections (before, during, and after being exposed to VR roller coaster content): Comparison between FG and UFG

BSGHC3_2018_v23n6_800_f0010.png 이미지

그림 10. 멀미 그룹(FG)과 비멀미 그룹(UFG)에 따른 VR 롤러코스터 체험 중 측정된 주관 멀미도 비교: 일시적으로 심한 멀미감을 보고한 최초 시점 비교(좌), 일시적으로 심한 멀미감이 보고된 상대비율 비교(우) Fig. 10. Comparison of subjective VR sickness level measured by putting a foot pedal during being exposed to VR rollercoaster for FG and UFG: First time to report strong VR sickness (left) and relative ratio of strong VR sickness (right)

BSGHC3_2018_v23n6_800_f0011.png 이미지

그림 11. 멀미 그룹 (FG)에 속한 피험자의 VR 롤러코스터 체험 전, 중, 후에 따른 뇌파 시각화: 인지로드의 바이오마커인 전두엽(이마 부분) 세타파 증가와 두정엽(정수리 뒷부분) 알파파 감소 패턴이 나타남 Fig. 11. Visualization of changes in EEG spectrum data for a representative FG subject before, during, and after being exposed to VR roller coaster content: Note that theta power at frontal sites increases and alpha power decreases at parietal sites with increasing cognitive load caused by accumulated visual load and the same pattern was observed in our experiment

References

  1. J. Lee, K. Suh, and S. Nam, "C-P-N-D Ecosystem-based Broadcasting/Media Virtual Reality (VR) Prospects," Journal of Broadcast Engineering, Vol.23, No.1, pp. 19-25, 2018, https://doi.org/10.5909/JBE.2018.23.1.19 (accessed Oct. 11, 2018).
  2. E. Kim, J. Kim, E. Yoo, and T. Park, "Study on Virtual Reality (VR) Operating System Prototype," Journal of Broadcast Engineering, Vol.22, No.1, pp. 87-94, 2017, https://doi.org/10.5909/JBE.2017.22.1.87 (accessed Oct. 11, 2018).
  3. H. Kwon and A. Hudson-Smith, "Redesigning Experience Consumption in Social VR Worlds: Decentralised Value Creation, Mobilisation, and Exchanges," 21st DMI: Academic Design Management Conference, London, United Kingdom, pp. 1-17, 2018.
  4. A. Yarramreddy, P. Gromkowski, and I. Baggili, "Forensic Analysis of Immersive Virtual Reality Social Applications: A Primary Accout," 2018 IEEE Security and Privacy Workshops (SPW), San Francisco, United States of America, pp. 186-196, 2018.
  5. L. Zhang, L. Sun, W. Wang, and J. Liu, "Unlocking the Door to Mobile Social VR: Architecture, Experiments and Challenges," IEEE Network, Vol.32, No.1, pp. 160-165, 2018, https://doi.org/10.1109/MNET.2017.1700014 (accessed Oct. 15, 2018)
  6. C. Zizza, et al., "Towards a Social Virtual Reality Learning Environment in High Fidelity," 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, United States of America, pp. 1-4, 2018.
  7. Facebook Demos Next-gen VR Plans, https://www.cnet.com/news/apple- second-quarter-iphone-x-salesshow-wall-street-analysts-got-it-wrong (accessed May 03, 2018).
  8. Facebook can Reconstruct a 3D World from your Photos and Videos, https://petapixel.com/2018/05/02/facebook-can-reconstruct-a-3d-world-from-your-photos-and-videos (accessed May 04, 2018).
  9. R. Xiao, et al., "MRTouch: Adding Touch Input to Head-Mounted Mixed Reality," IEEE Transactions on Visualization and Computer Graphics, Vol.24, No.4, pp.1653-1660, 2018, https://doi.org/10.1109/TVCG.2018.2794222 (accessed Sep. 3, 2018).
  10. M. A. Fischler and R. C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," Communications of the ACM, Vol.24, No.6, pp.381-395, 1981, https://doi.org/10.1016/B978-0-08-051581-6.50070-2 (accessed Sep. 3, 2018).
  11. Looxid Labs wins a CES 2018 Best of Innovation Awards in Virtual Reality, http://looxidlabs.com (accessed May 10, 2018).
  12. J. A. Coan and J. J. B. Allen, "Frontal EEG Asymmetry as a Moderator and Mediator of Emotion," Biological Psychology, Vol.67, No.1, pp.7-50, 2004, https://doi.org/10.1016/j.biopsycho.2004.03.002 (accessed Sep. 3, 2018).
  13. S. Park, et al., "Non-Contact Measurement of Heart Response Reflected in Human Eye," International Journal of Psychophysiology, Vol.123, pp.179-198, 2018, https://doi.org/10.1016/j.ijpsycho.2017. 07.014 (accessed Sep. 3, 2018).
  14. J.-Y. Jung, et al., "Causes of Cyber Sickness of VR Contents: An Experimental Study on the Viewpoint and Movement," The Journal of the Korea Contents Association, Vol.17, No.4, pp.200-208, April 2017. https://doi.org/10.5392/JKCA.2017.17.04.200
  15. S. Lee, A. Koo, and J. Jhung, Moskit: "Motion Sickness Analysis Platform for VR Games," IEEE International Conference on Consumer Electronics, Las Vegas, United States of America, pp. 17-18, 2017.
  16. H. G.F.A. and F. Fylan, "Two Visual Mechanisms of Photosensitivity," Epilepsia, Vol.40, No.10, pp.1446-1451, October 1999. https://doi.org/10.1111/j.1528-1157.1999.tb02018.x
  17. The Harding FPA is a Suite of Applications for Compliance with International Guidelines on Flashing and Spatial Patterns in Broadcast Video, http://www.hardingfpa.com (accessed May 16, 2018).
  18. E. Nalivaiko, et al., "Cybersickness Provoked by Head-mounted Display Affects Cutaneous Vascular Tone, Heart Rate and Reaction Time," Physiology & Behavior, Vol.151, pp. 583-590, https://doi.org/10.1016/j.physbeh.2015.08.043 (accessed Oct. 16, 2018).
  19. J. L. Dorado and P. A. Figueroa, "Ramps are Better than Stairs to Reduce Cybersickness in Applications Based on a HMD and a Gamepad," 2014 IEEE Symposium on 3D User Interfaces (3DUI), Minneapolis, United States of America, pp. 47-50, 2014.
  20. M. J. Cevette, et al., "Oculo-Vestibular Recoupling Using Galvanic Vestibular Stimulation to Mitigate Simulator Sickness," Aviation Space and Environmental Medicine, Vol.83, No.6, pp.549-555, June 2012. https://doi.org/10.3357/ASEM.3239.2012
  21. Top 5 Best Motion Sickness Bands & Wearables, https://heavy.com/ tech/2017/03/top-10-best-motion-sickness-bands-wearables (accessed May 18, 2018).
  22. A new ave of VR Motion Sickness Solutions is here, https://www.wareable.com/vr/new-wave-vr-motion-sickness-solutions (accessed May 18, 2018).
  23. S. Mun, et al., "SSVEP and ERP Measurement of Cognitive Fatigue Caused by Stereoscopic 3d," Neuroscience Letters, Vol.525, No.2, pp.89-94, 2012, https://doi.org/10.1016/j.neulet.2012.07.049 (accessed Sep. 3, 2018).
  24. S. Mun and M.-C. Park, "Affective Three-Dimensional Brain- Computer Interface Created Using a Prism Array-Based Display," Optical Engineering, Vol.53, No.12, pp.123105, 2014, https://doi. org/10.1117/1.OE.53.12.123105 (accessed Sep. 3, 2018).
  25. S. Mun, M.-C. Park, and S. Yano, "Performance Comparison of a SSVEP BCI Task by Individual Stereoscopic 3d Susceptibility," International Journal of Human-Computer Interaction," Vol.29, No.12, pp.789-797, 2013, https://doi.org/10.1080/10447318.2013.765289 (accessed Sep. 3, 2018).
  26. S. Mun, et al., "Effects of Mental Workload on Involuntary Attention: A Somatosensory ERP Study," Neuropsychologia, Vol.106, pp.7-20, 2017, https://doi.org/10.1016/j.neuropsychologia.2017.08.021 (accessed Sep. 3, 2018).
  27. S. Mun, E. S. Kim, and M. C. Park, "Effect of Mental Fatigue Caused by Mobile 3d Viewing on Selective Attention: An Erp Study," International Journal of Psychophysiology, Vol.94, No.3, pp.373-381, 2014, https://doi.org/10.1016/j.ijpsycho.2014.08.1389 (accessed Sep. 3, 2018).
  28. S. Mun, M.-C. Park, and S. Yano, "Evaluation of Viewing Experiences Induced by a Curved Three-Dimensional Display," Optical Engineering, Vol.54, No.10, pp.103104, 2015, https://doi.org/10.1117/1.OE.54.10.103104 (accessed Sep. 3, 2018).