DOI QR코드

DOI QR Code

Structural and Thermal Properties of Polysulfone Membrane Including Graphene

그래핀을 포함하는 폴리설폰 멤브레인의 구조 및 열 특성

  • Choi, Hyunmyeong (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Yong-Jin (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Sung, Choonghyun (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Oh, Weontae (Division of Advanced Materials Engineering, Dong-Eui University)
  • 최현명 (동의대학교 IT융합부품소재공과대학 신소재공학부) ;
  • 최용진 (동의대학교 IT융합부품소재공과대학 신소재공학부) ;
  • 성충현 (동의대학교 IT융합부품소재공과대학 신소재공학부) ;
  • 오원태 (동의대학교 IT융합부품소재공과대학 신소재공학부)
  • Received : 2018.01.29
  • Accepted : 2018.02.06
  • Published : 2018.02.28

Abstract

Polysulfone composites including graphene were prepared, and their thermal characteristics in membrane states were analyzed by using a custome-made residual stress analyzer and a thermal diffusivity analyzer based on laser flash method. The residual stress analysis was carried out on the polysulfone composite films deposited on Si (100) substrates for 1 cycle of heating and cooling runs. The flat membrane of graphene-embedded polysulfone composites were prepared by the phase transfer method in distilled water and the thermal conductivity was separately measured in the out-of-plane and the in-plane directions. The residual stress of the graphene-embedded polysulfone film was gradually decreased with increasing graphene loading and the out-of-plane thermal conductivity was distinguished from the in-plane thermal conductivity in the flat membranes. These thermal characteristics are caused by the structural uniqueness of graphene and the micro-void structures formed during membrane fabrication.

Polysulfone 수지를 사용한 그래핀 복합조성물을 제조하고, 이것들의 멤브레인에 대한 잔류응력과 열전도 특성을 분석하였다. 그래핀을 포함하는 polysulfone 멤브레인의 잔류응력분석은 Si (100) 기판에 스핀코팅으로 $10{\mu}m$ 두께의 막을 도포하여 준비한 시료를 대상으로 하였으며, 잔류응력의 측정은 온도를 승온하고 냉각하는 완전한 1주기 동안 수행하였다. 그래핀을 포함하는 polysulfone 평막을 증류수를 사용한 상전이법으로 제조하여 두께방향과 면방향으로 열전도도를 구분하여 각각 측정하였으며 평막시료의 열전도 이방성을 분석하였다. 그래핀의 구조적 특징에 의해 이를 포함하는 polysulfone 막의 잔류응력은 그래핀 함량이 증가함에 따라 점차로 완화되는 경향을 나타내었고, 열전도특성은 평막형성의 구조적 특성과 그래핀의 고유특성에 의해 두께방향과 면방향의 차이를 확인할 수 있었다.

Keywords

References

  1. R. W. Baker, "Membrane technology and applications second edition", p. 15-84, John Wiley & Sons (2004).
  2. H. K. Lonsdale, "The growth of membrane technology", Membr. J., 10, 81 (1982). https://doi.org/10.1016/S0376-7388(00)81408-8
  3. D. R. Paul and L. M. Rubeson, "Polymer nanotechnology: Nanocomposites", Polymer, 49, 3187 (2008).
  4. W. D. Callister, Jr., "Materials Science and Engineering an Introduction", 7th edition, p. 2-13, John Wiley and Sons, Inc. (2007).
  5. C. Guell, M. Ferrando, and F. Lopez, "Monitoring and visualizing membrane based processes-microscopy techniques for the characterization of membrane morphology", p. 34-54, John Wiley & Sons (2009).
  6. Y. J. Choi and B. C. Kang, "Effect of Ether-typed alcohols on pore formation in preparing an asymmetrically porous polysulfone membrane", Membr. J., 20, 135 (2010).
  7. S. R. Choi, S. J. Park, B. K. Seo, K. W. Lee, S. T. Nam, and M. J. Han, "Effect of propionic acid additive on preparation of phase inversion polysulfone membrane", Membr. J., 18, 317 (2008).
  8. W. Zhou, D. Yu, C. Min, Y. Fu, and X. Guo, "Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites", J. Appl. Polym. Sci., 112, 1695 (2009). https://doi.org/10.1002/app.29602
  9. G. W. Lee, J. Kim, J. Yoon, J. S. Bae, B. C. Shin, I. S. Kim, W. Oh, and M. Ree, "Structural characterization of carboxylated multi-walled carbon nanotubes", Thin Solid Films, 516, 5781 (2008). https://doi.org/10.1016/j.tsf.2007.10.071
  10. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, "Fullerene Pipes", Science, 280, 1253 (1998).
  11. Y. K. Chen, M. L. H. Green, J. L. Griffin, J. Hammer, R. M. Lago, and S. C. Tsang, "Purification and opening of carbon nanotubes via bromination", Adv. Mater., 8, 1012 (1996). https://doi.org/10.1002/adma.19960081216
  12. W. Hummers and R. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339 (1958).
  13. G. W. Lee and S. Kumar, "Dispersion of nitric acid-treated SWNTs in organic solvents and solvent mixtures", J. Phys. Chem. B., 109, 17128 (2005).
  14. D. R. Paul, "Creating new types of carbon-based membranes", Science, 335, 413 (2012). https://doi.org/10.1126/science.1216923
  15. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442 (2012). https://doi.org/10.1126/science.1211694
  16. S. Karan, S. Samitsu, X. Peng, K. Kurashima, and I. Ichinose, "Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets", Science, 335, 444 (2012). https://doi.org/10.1126/science.1212101
  17. S.-Y. Park, J.-S. Bae, J.-G. Kim, M.-W. Oh, J. Kim, D.-G. Nam, J. H. Yeum, and W. Oh, "Anisotropic thermal characteristics of graphene-embedded polyimide composite sheets", Polym. Polym Comp., 24, 315 (2016).
  18. W. Oh, T. J. Shin, M. Ree, M. Y. Jin, and K. Char, "Residual stress evolution in dielectric thin films prepared from poly(methylsilsesquioxane) presursor", Macromol Chem. Phys., 203, 801 (2002). https://doi.org/10.1002/1521-3935(20020401)203:5/6<801::AID-MACP801>3.0.CO;2-E
  19. R. Luo, T. Liu, J. Li, H. Zhang, Z. Chen, and G. Tian, "Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity", Carbon, 42, 2887 (2004). https://doi.org/10.1016/j.carbon.2004.06.024
  20. M. Koo, J.-S. Bae, S. E. Shim, D. Kim, D.-G. Nam, J. W. Lee, G. W. Lee, J. H. Yeum, and W. Oh, "Thermo-dependent characteristics of polyimide-graphene composites", Colloid Polym. Sci., 289, 1503 (2011). https://doi.org/10.1007/s00396-011-2469-x