DOI QR코드

DOI QR Code

Effects of macronutrients in mixed meals on postprandial glycemic response

식품 및 음식의 다량영양소 구성 성분에 따른 혈당 반응 연구

  • Park, Mi-Hyeon (Department of Foods and Nutrition, Kookmin University) ;
  • Chung, Sang-Jin (Department of Foods and Nutrition, Kookmin University) ;
  • Shim, Jae Eun (Department of Food and Nutrition, Daejeon University) ;
  • Jang, Sung-Hee (Corporate Technology Office, Pulmuone Co., Ltd.) ;
  • Nam, Ki-Sun (Corporate Technology Office, Pulmuone Co., Ltd.)
  • 박미현 (국민대학교 식품영양학과) ;
  • 정상진 (국민대학교 식품영양학과) ;
  • 심재은 (대전대학교 식품영양학과) ;
  • 장성희 ((주)풀무원 풀무원기술원) ;
  • 남기선 ((주)풀무원 풀무원기술원)
  • Received : 2017.02.21
  • Accepted : 2018.01.24
  • Published : 2018.02.28

Abstract

Purpose: The aim of study was to determine the effects of carbohydrate, fat, protein, and fiber contents on glycemic responses in a single food item or meal. Methods: Glycemic responses were measured in 30 healthy young adults (17 males and 13 females) with various test foods, including rice, egg whites, bean sprouts, olive oil, noodles, prune, broccoli, Korean dishes, Western dishes, and salad dishes, etc. Test foods were designed to contain various carbohydrate, fat, protein, and fiber contents in single or mixed foods or dishes. After 12 hours of fasting, participants consumed test foods, and the glycemic response was measured for a subsequent 120 min (0, 15, 30, 60, 90, and 120 min). Three hundred and fifty three glycemic responses from 62 foods were collected. The incremental area under the curve (AUC) was calculated for each test food for each subject to examine glycemic responses. Statistical analysis was conducted to identify which macronutrient (carbohydrate, fat, protein and fiber) affected the AUC using a mixed model. Results: Carbohydrates (${\beta}=37.18$, p < 0.0001) significantly increased while fat (${\beta}=-32.70$, p = 0.0054) and fiber (${\beta}=-32.01$, p = 0.0486) significantly reduced the glycemic response. Conclusion: It can be concluded that the glycemic response of a meal can be modified depending on the fat and fiber contents of ingredient foods, even though carbohydrate content is maintained.

본 연구에서는 동일한 끼니에 섭취한 각 식품 및 음식의 영양성분 중 에너지에 기여하는 다량영양소인 탄수화물, 지방, 단백질과 식이섬유소가 혈당 반응에 어떠한 영향을 주는지를 알아보고자 하였다. 20대 성인 남녀를 대상으로 총 62가지의 단일 또는 여러 가지 단일 식품으로 구성된 혼합 식사 섭취 후 2시간 동안의 혈당을 측정하여 혈당곡 선하면적을 계산하였다. 그 결과 일반적으로 탄수화물 함량이 증가하면 혈당곡선하면적이 증가하였다. 그러나 탄수화물 이외에 식품 및 음식에 함유된 지방, 식이섬유소 등의 함량도 혈당곡선하면적에 영향을 준 것을 확인할 수 있었다. 탄수화물, 단백질, 지방, 식이섬유소의 영양성분이 혈당곡선하면적에 미치는 영향을 분석한 결과 탄수화물(${\beta}=37.18$, p < 0.0001)은 혈당곡선하면적을 유의적으로 증가시켰고, 지방 (${\beta}=-32.70$, p = 0.0054), 식이섬유소 (${\beta}=-32.01$, p = 0.0486)는 유의적으로 감소시켰으며, 단백질 (${\beta}=-12.93$, p = 0.1657)은 혈당 반응에 유의적인 영향을 미치지 않았다. 본 연구는 식품 및 음식의 영양성분 중 탄수화물 함량만이 아닌 지방, 식이섬유소가 서로 상호작용하여 혈당 반응에 영향을 미치는 것을 확인하여 의미가 크다.

Keywords

References

  1. Song S, Choi H, Lee S, Park JM, Kim BR, Paik HY, Song Y. Establishing a table of glycemic index values for common Korean foods and an evaluation of the dietary glycemic index among the Korean adult population. Korean J Nutr 2012; 45(1): 80-93. https://doi.org/10.4163/kjn.2012.45.1.80
  2. Sun L, Ranawana DV, Leow MK, Henry CJ. Effect of chicken, fat and vegetable on glycaemia and insulinaemia to a white rice-based meal in healthy adults. Eur J Nutr 2014; 53(8): 1719-1726. https://doi.org/10.1007/s00394-014-0678-z
  3. Kim DY, Lee H, Choi EY, Lim H. Analysis and evaluation of glycemic indices and glycemic loads of frequently consumed carbohydrate-rich snacks according to variety and cooking method. J Korean Soc Food Sci Nutr 2015; 44(1): 14-23. https://doi.org/10.3746/jkfn.2015.44.1.014
  4. Ministry of Health and Welfare, Korea Centers for Disease Control and Prevention. Korea Health Statistics 2014: Korea National Health and Nutrition Examination Survey (KNHANES VI-2). Cheongju: Korea Centers for Disease Control and Prevention; 2015.
  5. Jenkins DJ, Wolever TM, Jenkins AL. Starchy foods and glycemic index. Diabetes Care 1988; 11(2): 149-159. https://doi.org/10.2337/diacare.11.2.149
  6. Riccardi G, Rivellese AA, Giacco R. Role of glycemic index and glycemic load in the healthy state, in prediabetes, and in diabetes. Am J Clin Nutr 2008; 87(1): 269S-274S. https://doi.org/10.1093/ajcn/87.1.269S
  7. Kim IJ. Glycemic index revisited. Korean Diabetes J 2009; 33(4): 261-266. https://doi.org/10.4093/kdj.2009.33.4.261
  8. Gaesser GA. Carbohydrate quantity and quality in relation to body mass index. J Am Diet Assoc 2007; 107(10): 1768-1780. https://doi.org/10.1016/j.jada.2007.07.011
  9. McKeown NM, Meigs JB, Liu S, Rogers G, Yoshida M, Saltzman E, Jacques PF. Dietary carbohydrates and cardiovascular disease risk factors in the Framingham offspring cohort. J Am Coll Nutr 2009; 28(2): 150-158. https://doi.org/10.1080/07315724.2009.10719766
  10. Liu S, Willett WC, Stampfer MJ, Hu FB, Franz M, Sampson L, Hennekens CH, Manson JE. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 2000; 71(6): 1455-1461. https://doi.org/10.1093/ajcn/71.6.1455
  11. Denova-Gutierrez E, Huitron-Bravo G, Talavera JO, Castañon S, Gallegos-Carrillo K, Flores Y, Salmeron J. Dietary glycemic index, dietary glycemic load, blood lipids, and coronary heart disease. J Nutr Metab 2010; 2010: 170680.
  12. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am J Clin Nutr 2004; 80(2): 348-356. https://doi.org/10.1093/ajcn/80.2.348
  13. Barclay AW, Petocz P, McMillan-Price J, Flood VM, Prvan T, Mitchell P, Brand-Miller JC. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies. Am J Clin Nutr 2008; 87(3): 627-637. https://doi.org/10.1093/ajcn/87.3.627
  14. Du H, van der A DL, van Bakel MM, van der Kallen CJ, Blaak EE, van Greevenbroek MM, Jansen EH, Nijpels G, Stehouwer CD, Dekker JM, Feskens EJ. Glycemic index and glycemic load in relation to food and nutrient intake and metabolic risk factors in a Dutch population. Am J Clin Nutr 2008; 87(3): 655-661. https://doi.org/10.1093/ajcn/87.3.655
  15. Murakami K, Sasaki S, Takahashi Y, Okubo H, Hirota N, Notsu A, Fukui M, Date C. Reproducibility and relative validity of dietary glycaemic index and load assessed with a selfadministered diet-history questionnaire in Japanese adults. Br J Nutr 2008; 99(3): 639-648. https://doi.org/10.1017/S0007114507812086
  16. Hatonen KA, Virtamo J, Eriksson JG, Sinkko HK, Sundvall JE, Valsta LM. Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. Br J Nutr 2011; 106(2): 248-253. https://doi.org/10.1017/S0007114511000080
  17. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TM. Glycaemic index methodology. Nutr Res Rev 2005; 18(1): 145-171. https://doi.org/10.1079/NRR2005100
  18. Wolever TM, Jenkins DJ. The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr 1986; 43(1): 167-172. https://doi.org/10.1093/ajcn/43.1.167
  19. Wolever TM, Yang M, Zeng XY, Atkinson F, Brand-Miller JC. Food glycemic index, as given in glycemic index tables, is a significant determinant of glycemic responses elicited by composite breakfast meals. Am J Clin Nutr 2006; 83(6): 1306-1312. https://doi.org/10.1093/ajcn/83.6.1306
  20. Gannon MC, Nuttall FQ, Westphal SA, Seaquist ER. The effect of fat and carbohydrate on plasma glucose, insulin, C-peptide, and triglycerides in normal male subjects. J Am Coll Nutr 1993; 12(1): 36-41. https://doi.org/10.1080/07315724.1993.10718280
  21. Ercan N, Gannon MC, Nuttall FQ. Effect of added fat on the plasma glucose and insulin response to ingested potato given in various combinations as two meals in normal individuals. Diabetes Care 1994; 17(12): 1453-1459. https://doi.org/10.2337/diacare.17.12.1453
  22. Munoz JM, Sandstead HH, Jacob RA, Johnson L, Mako ME. Effects of dietary fiber on glucose tolerance of normal men. Diabetes 1979; 28(5): 496-502. https://doi.org/10.2337/diab.28.5.496
  23. Gatenby SJ, Ellis PR, Morgan LM, Judd PA. Effect of partially depolymerized guar gum on acute metabolic variables in patients with non-insulin-dependent diabetes. Diabet Med 1996; 13(4): 358-364. https://doi.org/10.1002/(SICI)1096-9136(199604)13:4<358::AID-DIA24>3.0.CO;2-#
  24. Quek R, Bi X, Henry CJ. Impact of protein-rich meals on glycaemic response of rice. Br J Nutr 2016; 115(7): 1194-1201.
  25. Cunningham KM, Daly J, Horowitz M, Read NW. Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut 1991; 32(5): 483-486. https://doi.org/10.1136/gut.32.5.483
  26. Flint A, Moller BK, Raben A, Pedersen D, Tetens I, Holst JJ, Astrup A. The use of glycaemic index tables to predict glycaemic index of composite breakfast meals. Br J Nutr 2004; 91(6): 979-989. https://doi.org/10.1079/BJN20041124

Cited by

  1. GL 예측모델 (estimated Glycemic Load, eGL)을 활용한 한국 성인의 식사 평가 및 대사질환 지표와의 연관성 연구 : 2013~2016년 국민건강영양조사 자료를 활용하여 vol.52, pp.4, 2019, https://doi.org/10.4163/jnh.2019.52.4.354
  2. 식단의 당부하량에 따른 20대 성인의 체중 감량 효과 연구 vol.53, pp.5, 2018, https://doi.org/10.4163/jnh.2020.53.5.464
  3. Development of a Prediction Model to Estimate the Glycemic Load of Ready-to-Eat Meals vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112626