DOI QR코드

DOI QR Code

산소환원반응을 위한 탄화철이 내재된 질소 도핑된 탄소의 제조

Synthesis of Fe3C-Embedded Nitrogen Doped Carbon for Oxygen Reduction Reaction

  • 이영근 (서울과학기술대학교 신소재공학과) ;
  • 안건형 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Lee, Young-Geun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 투고 : 2018.09.06
  • 심사 : 2018.10.08
  • 발행 : 2018.11.27

초록

The design of non-precious electrocatalysts with low-cost, good stability, and an improved oxygen reduction reaction(ORR) to replace the platinium-based electrocatalyst is significant for application of fuel cells and metal-air batteries with high energy density. In this study, we synthesize iron-carbide($Fe_3C$) embedded nitrogen(N) doped carbon nanofiber(CNF) as electrocatalysts for ORRs using electrospinning, precursor deposition, and carbonization. To optimize electrochemical performance, we study the three stages according to different amounts of iron precursor. Among them, $Fe_3C$-embedded N doped CNF-1 exhibits the most improved electrochemical performance with a high onset potential of -0.18 V, a high $E_{1/2}$ of -0.29 V, and a nearly four-electron pathway (n = 3.77). In addition, $Fe_3C$-embedded N doped CNF-1 displays exellent long-term stabillity with the lowest ${\Delta}E_{1/2}=8mV$ compared to the other electrocatalysts. The improved electrochemical properties are attributed to synergestic effect of N-doping and well-dispersed iron carbide embedded in CNF. Consequently, $Fe_3C$-embedded N doped CNF is a promising candidate for non-precious electrocatalysts for high-performance ORRs.

키워드

참고문헌

  1. J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff and J. K. Norskov, Nat. Chem., 1, 552 (2009). https://doi.org/10.1038/nchem.367
  2. G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. L. Brett, A. B. Fuertes, M. Sevilla and M.- M. Titirici, ACS Nano, 10, 5922 (2016). https://doi.org/10.1021/acsnano.6b01247
  3. M. Li, L. Zhang, Q. Xu, J. Niu and Z. Xia, J. Catal., 314, 66 (2014). https://doi.org/10.1016/j.jcat.2014.03.011
  4. Z. Zhao, M. Li, L. Zhang, L. Dai and Z. Xia, Adv. Mater., 27, 6834 (2015). https://doi.org/10.1002/adma.201503211
  5. D. Y. Sin, G. H. An and H. J. Ahn, J. Nanosci. Nanotechnol., 16, 10535 (2016). https://doi.org/10.1166/jnn.2016.13190
  6. H. L. An, G. H. Ahn and H. J. Ahn, J. Mater. Res., 26, 250 (2016).
  7. G. H. An, E. H. Lee and H. J. Ahn, J. Korean Powder Metall. Inst., 23, 420 (2016).
  8. G. H. An, D. Y. Lee and H. J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017). https://doi.org/10.1021/acsami.7b01286
  9. Y. G. Lee, G. H. An and H. J. Ahn, Korean J. Mater. Res., 27, 192 (2017). https://doi.org/10.3740/MRSK.2017.27.4.192
  10. L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung and T. Zhang, Adv. Mater., 28, 1668 (2016). https://doi.org/10.1002/adma.201505045
  11. D.-H Kwak, S.-B. Han, Y.-W. Lee, H.-S. Park, I.-A. Choi, M.-C. Kim, S.-J. Kim, D.-H. Kim, J.-I. Son and K.-W. Park, Appl. Catal., B, 203, 889 (2017). https://doi.org/10.1016/j.apcatb.2016.10.084
  12. G. H. An, E. H. Lee and H. J. Ahn, J. Alloys Compd., 682, 746 (2016). https://doi.org/10.1016/j.jallcom.2016.05.033
  13. G. Panomsuwan, N. Saito and T. Ishizaki, J. Mater. Chem. A, 3, 9972 (2015). https://doi.org/10.1039/C5TA00244C
  14. S. Lee, D.-H Kwak, S.-B. Han, Y.-W. Lee, J.-Y. Lee, I.-A. Choi, H.-S. Park, J.-Y. Park and K.-W. Park, ACS Catal., 6, 5095 (2016). https://doi.org/10.1021/acscatal.5b02721
  15. G. Ren, X. Lu, Y. Li, Y. Zhu, L. Dai and L. Jiang, ACS Appl. Mater. Interfaces, 8, 4118 (2016). https://doi.org/10.1021/acsami.5b11786
  16. G.-H. An, Y.-G. Lee and H.-J. Ahn, J. Alloys Compd., 746, 177 (2018). https://doi.org/10.1016/j.jallcom.2018.02.281
  17. Y.-G. Lee, G.-H. Ahn and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018). https://doi.org/10.3740/MRSK.2018.28.3.182
  18. G. H. An, D. Y. Lee, Y. J. Lee and H. J. Ahn, ACS Appl. Mater. Interfaces, 8, 30264 (2016). https://doi.org/10.1021/acsami.6b10868
  19. S. Chen, J. Bi, Y. Zhao, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang and Z. Hu, Adv. Mater., 24, 5593 (2012). https://doi.org/10.1002/adma.201202424
  20. L. Zhang and Z. Xia, J. Phys. Chem. C, 115, 11170 (2011).
  21. D. Shin, B. Jeong, B. S. Mun, H. Jeon, H.-J. Shin, J. Baik and J. Lee, J. Phys. Chem. C, 117, 11619 (2013). https://doi.org/10.1021/jp401186a