DOI QR코드

DOI QR Code

Hydrolysis of Non-digestible Components of Soybean Meal by α-Galactosidase from Bacillus coagulans NRR1207

Bacillus coagulans NRR1207이 생산하는 α-galactosidase에 의한 대두박 비소화성분의 가수분해

  • Ra, Seok Han (Chungmi-Bio Company) ;
  • Renchinkhand, Gereltuya (Department of Animal Bio-system Science, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Park, Min-gil (Major in the Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Kim, Woan-sub (Major in the Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Paik, Seung-Hee (Division of Food Service Industry, Yonam College) ;
  • Nam, Myoung Soo (Department of Animal Bio-system Science, College of Agriculture and Life Sciences, Chungnam National University)
  • 라석한 (청미바이오(주)) ;
  • 렌친핸드 (충남대학교 동물자원과학부) ;
  • 박민길 (한경대학교 동물생명환경과학과) ;
  • 김완섭 (한경대학교 동물생명환경과학과) ;
  • 백승희 (연암대학 외식산업계열) ;
  • 남명수 (충남대학교 동물자원과학부)
  • Received : 2018.07.11
  • Accepted : 2018.10.22
  • Published : 2018.11.30

Abstract

The fermentation of non-digestible soy meal can convert polysaccharides into many compounds that have a wide variety of biological functions. Bacillus strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. A highly active ${\alpha}$-galactosidase (${\alpha}$-d-galactoside galactohydrolase, EC 3.2.1.22) was isolated from a bacterium in a traditional Korean fermented medicinal herb preparation. The isolate, T2-16, was identified as Bacillus coagulans based on its 16S rRNA sequence and biochemical properties, and the strain was named Bacillus coagulans NRR-1207. When incubated in 10%(w/v) skim milk, Bacillus coagulans NRR1207 caused a decrease in the pH of the culture medium, as well as an increase in titratable acidity and viable cell counts. This strain also showed higher activities of ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, naphthol-AS-BO-phosphohydrolase, and acid phosphatase when compared to other enzymes. It hydrolyzed oligomeric substrates, such as raffinose and stachyose, and liberated galactose, indicating that the Bacillus coagulans NRR1207 ${\alpha}$-galactosidase hydrolyzed the ${\alpha}$-1,6 glycoside linkage. These results suggest that the decreased stachyose and raffinose contents observed in fermented soy meal are due to this ${\alpha}$-galactosidase activity. Bacillus coagulans NRR1207 therefore has potential probiotic activity and could be utilized in feed manufacturing, as well as for hydrolyzing non-digestible soy meal components.

본 연구는 한국전통약용식물(구기자, 오미자 잎)의 발효물로부터 분리한 Bacillus coagulanse NRR1207의 발효 특성을 파악하고 Bacillus coagulans NRR1207의 ${\alpha}$-galactosidase의 활성과 이를 통한 대두박의 비소화성분의 분해를 확인하였다. Bacillus coagulans NRR1207이 생산하는 효소 중 ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase가 가장 높은 40 nmol 이상의 활성을 나타내었다. Bacillus coagulans NRR1207의 발효 특성은 10% skim milk에서 배양했을 때, pH는 급속히 감소했고 적정 산도는 1.9%까지 증가했고 생균수도 발효 24시간에 8.8 log CFU/ml로 증가했다. 유당은 배양 72시간째 완전히 고갈되었고 유산 생산 능력도 탁월했다. Bacillus coagulans NRR1207을 대두박에 접종 후 배양시간에 따른 생균수의 변화는 배양 시작 시 7.6 log CFU/ml, 배양 16시간에 최고에 도달하여 9.0 log CFU/ml이었고 배양 72시간에 8.3 log CFU/ml로 Bacillus coagulans NRR1207이 왕성하게 잘 성장하였다. 대두박의 비소화성분 분해는 Bacillus coagulans NRR1207 접종 후 발효 24, 48, 72시간이 경과하면서 이 균이 생산한 ${\alpha}$-galactosidase에 의해 비소화성분인 stachyose와 raffinose가 대부분 분해되고 galactose가 생성되었다. 따라서 Bacillus coagulans NRR1207은 대두박의 비소화성분을 분해하는 생균제(Probiotics)로써 이용하여 식품 및 가축 사료 이용성 증대에 활용이 가능할 것으로 사료된다.

Keywords

SMGHBM_2018_v28n11_1347_f0001.png 이미지

Fig. 1. Phylogenetic tree of based on 16S rDNA sequences showing the phylogenetic relationships among strain T2-16 and other bacteria. Scale length is 0.01.

SMGHBM_2018_v28n11_1347_f0002.png 이미지

Fig. 2. Kinetic changes of pH, acidity, and viable cell number during cultivation of B. coagulans NRR1207 in 10% skim milk for 24 hr at 37℃.

SMGHBM_2018_v28n11_1347_f0003.png 이미지

Fig. 3. Decrease and increase in the levels of lactose and galactose during cultivation of B. coagulans NRR1207 in 10% skim milk at 37℃ for various time periods. Symbols: 1, control; 2, 24 hr; 3, 48 hr; 4, 72 hr.

SMGHBM_2018_v28n11_1347_f0004.png 이미지

Fig. 4. Kinetic analysis of organic acid productions during cultivation of B. coagulans NRR1207 in 10% skim milk at 37℃ for various time periods. Symbols: 1, control; 2, 24 hr; 3, 48 hr; 4, 72 hr.

SMGHBM_2018_v28n11_1347_f0005.png 이미지

Fig. 5. Growth kinetics of B. coagulans NRR1207 during cultivation in soymeal broth for 72 hr at 50℃.

SMGHBM_2018_v28n11_1347_f0006.png 이미지

Fig. 6. Kinetic analysis of stachyose and raffinose levels during cultivation of B. coagulans NRR1207 in soybean broth at 50℃ for various time periods. Symbols: A, control; B, 1 day; C, 3 days; D, 7 days.

Table 1. Enzymatic activities of strain T2-16 using API ZYM kit

SMGHBM_2018_v28n11_1347_t0001.png 이미지

References

  1. American Soybean Association. Soy States. http://soystats.com/2012, accessed 1st May 2012.
  2. AOAC. 1980. Official methods of analysis of the association official analytical chemists. Washington, D.C.
  3. Bahl, O. P. and Agrawal, K. M. L. 1969. Glycosidases of Aspergillus niger. Purification and characterization of ${\alpha}$- and ${\beta}$-galactosidase and ${\beta}$-N-acetylglucosaminidase. J. Biol. Chem. 244, 2970-2978.
  4. Baron, M. 2009. A patented strain of bacillus coagulans increased immune response to viral challenge. Postgrad. Med. 121, 114-118. https://doi.org/10.3810/pgm.2009.03.1971
  5. Chen, L., Madl, R. L., Vadlani, P.V., Li, L. and Wang, W. 2013. Value-added products from soybean: Removal of anti-nutritional factors via bioprocessing. http://dx.doi.org/10.5772/52993
  6. Dey, P. M. and Pridham, J. B. 1972. Biochemistry of ${\alpha}$-galactosidases. Adv. Enzymol. 36, 91-130.
  7. Ganter, C. A., Bock, P., Buckel, P. and Mattes, R. 1988. Production of thermostable, recombinant ${\alpha}$-galactosidase suitable for raffinose elimination from sugar beet syrup. J. Biotechnol. 8, 301-310. https://doi.org/10.1016/0168-1656(88)90022-3
  8. Hammer, B. W. 1915. Bacteriological studies on the coagulation of evaporated milk. Iowa Agric. Exp. Stn. Res. Bull. 19, 119-131.
  9. Henry, R. J. and Saini, H. S. 1989. Characterization of cereal sugars and oligosaccharides. Cereal Chem. 66, 362-365.
  10. Hun, L. 2009. Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgrad. Med. 121, 119-124.
  11. Leblanc, J. G., Ledue-Clier, M., Bensaada, M., de Giori, G. S., Guerekobaya, T., Sesma, F., Juillard, V., Rabot, S. and Piard, J. C. 2008. Ability of Lactobacillus fermentum to overcome host ${\alpha}$-galactosidase deficiency, as evidenced by reduction of hydrogen excretion in rats consuming soys-galacto-oligosaccharides. BMC Microbiology doi: 10.1186/1471-2180-8-22.
  12. Leder, S., Hartmeier, W. and Marx, S. P. 1999. ${\alpha}$-Galactosidase of Bifidobacterium adolesscentis DSM 20083. Current Microbiol. 38, 101-106. https://doi.org/10.1007/s002849900411
  13. Liyan, C., Ronald, L., Madl, P. V., Vadlani, L. L. and Weiqun, W. 2013. (February, 20th) Value- Added Products from Soybean: Removal of Anti-Nutritional Factors via Bioprocessing, Soybean Hany El-Shemy, Intech Open. doi: 10.5772/52993.
  14. Machaiah, J. P., Pednekar, M. D. and Thomas, P. 1999. Reduction in flatulence factors in mung beans (vigna radiate) using low-dose gamma-irradiation. J. Sci. Food Agri. 7, 648-652.
  15. Maeda, H. and Nakamura, A. 2009. Soluble soybean polysaccharide. In: Phillips G. O, Williams, P. A., Handbook of Hydrocollloids (2nd), New York:Woodhead Publishing., 693-709.
  16. Manzanares, P., de Graaff, L. H. and Visser, J. 1998. Characterization of galactosidases from Aspergillus niger: purification of a novel ${\alpha}$-Galactosidase activity. Enzyme Microb. Technol. 22, 383-390. https://doi.org/10.1016/S0141-0229(97)00207-X
  17. Nam, K. H., Jang, M. S., Park, H. Y. and Koneva, E. 2014. Biochemical characterization of ${\alpha}$-galactosidase producing thermophilic bacillus coagulans KM-1. Kor. J. Fish Aquat. Sci. 47, 516-521.
  18. Saidi, B. and Warthesen, J. J. 1989. Analysis and stability of orotic acid in milk. J. Dairy Sci. 72, 2900-2905. https://doi.org/10.3168/jds.S0022-0302(89)79440-6
  19. Sanders, M. E., Morelli, L. and Tompkins, T. A. 2003. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Comprehen. Reviews in Food Sci. Food Safety 2, 101-110. https://doi.org/10.1111/j.1541-4337.2003.tb00017.x
  20. Saulnier, D. M., Kolida, S. and Gibson, G. R. 2009. Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr. Pharm. Des. 15, 1403-1414. https://doi.org/10.2174/138161209788168128
  21. Somiari, R. I. and Balogh, E. 1995. Properties of and extracellular glycosidase of Aspergillus niger suitable for removal of oligosaccharides from cowpea meal. Enzyme Microb. Technol. 17, 311-316. https://doi.org/10.1016/0141-0229(94)00006-9
  22. Yamaguishi, C. T., Sanada, C. T., Gouvea, P. M., Pandey, A., Woiciechowski, A. L., Parada, J. L. and Soccol, C. R. 2009. Biotechnological process for producing black bean slurry without stachyose. Food Res. Inter. 42, 425-429. https://doi.org/10.1016/j.foodres.2009.01.019