DOI QR코드

DOI QR Code

Theoretical Studies on the Electrical Characteristics of the Anthocyanin Derivatives

안토시아닌 유도체의 전기적 특성에 대한 이론적 연구

  • 이철재 (영남이공대학교 화장품화공계열) ;
  • 최정원 (영남이공대학교 전기자동화과) ;
  • 장운근 (영남이공대학교 기계계열)
  • Received : 2018.09.02
  • Accepted : 2018.10.04
  • Published : 2018.11.30

Abstract

Anthocyanin derivatives are an important of natural compounds responsible for the red, purple and blue colors in a large number of plants. This molecules are polymethoxy-derivatives of 2-phenylbenzopyrylium salts. Despite the beneficial properties of anthocyanins, the effectiveness of preventing or treating various diseases depends on bioavailability. Therefore, In this study, in order to investigate the electrical characteristics of anthocyanin derivatives, we investigated the electrochemical properties of derivatives by calculating the total energy, bandgap, net charge of anthocyanin derivatives using HyperChem8.0's PM3 method.

안토시아닌 유도체는 다수의 식물에서 적색, 보라색 및 청색을 나타내는 천연 화합물의 중요한 성분이다. 안토시아닌 분자는 2-페닐 벤조피릴리움 염의 폴리메톡시 유도체이다. 안토시아닌의 유익한 특성에도 불구하고 다양한 질병을 예방하거나 치료하는 효과는 생체 이용률에 달려 있다. 따라서 이 연구에서는 안토시안 유도체의 전기적 특성을 알아보기 위해 HyperChem8.0의 PM3 방법을 이용하여 안토시아닌 유도체의 총 에너지, 밴드갭, 정전포텐셜, 알짜 전하량을 계산하여 유도체의 전기화학적 특성을 조사 하였다.

Keywords

GJMGCK_2018_v4n4_343_f0001.png 이미지

그림 1. 안토시아닌 유도체의 분자구조 (a)아우란티니딘, (b)카펜 시니딘, (c)시아니딘 그리고 (d)델피니딘. Figure 1. The structure of anthocyanine derivatives (a)Aurantinidin, (b)Capensinidin, (c)Cyanidin and (d)Delphinidin.

GJMGCK_2018_v4n4_343_f0002.png 이미지

그림 2. 하이퍼캠 PM3 방법으로 계산된 안토시아닌 유도체 (a)아우란티니딘, (b)카펜시니딘, (c)시아니딘 그리고 (d)델피니딘의 3차원 구조. Figure 2. The three dimensional structure of the anthocyanin derivatives (a)Aurantinidin, (b)Capensinidin, (c)Cyanidin and (d)Delphinidin calculated by HyperChem PM3 methods.

GJMGCK_2018_v4n4_343_f0003.png 이미지

그림 3. 하이퍼캠 PM3 방법으로 계산된 안토시아닌 유도체 (a)아우란티니딘, (b)카펜시니딘, (c)시아니딘 그리고 (d)델피니딘의 경계분자궤도함수.. Figure 3. The frontier molecular orbitals for anthocyanin derivatives (a)Aurantinidin, (b)Capensinidin, (c)Cyanidin and (d)Delphinidin calculated by HyperChem PM3 methods.

GJMGCK_2018_v4n4_343_f0004.png 이미지

그림 4. 하이퍼캠 PM3 방법으로 계산된 안토시아닌 유도체 (a)아우란티니딘, (b)카펜시니딘, (c)시아니딘 그리고 (d)델피니딘의 정전포텐셜의 3차원 분포구조. Figure 4. The 3D geometry of the distribution electrostatic potential of anthocyanin derivatives (a)Aurantinidin, (b)Capensinidin, (c)Cyanidin and (d)Delphinidin calculated by HyperChem PM3 methods.

GJMGCK_2018_v4n4_343_f0005.png 이미지

그림 5. 하이퍼캠 PM3 방법으로 계산된 안토시아닌 유도체 (a)아우란티니딘, (b)카펜시니딘, (c)시아니딘 그리고 (d)델피니딘의 원자전하. Figure 5. The atomic charge of anthocyanin derivatives (a)Aurantinidin, (b)Capensinidin, (c)Cyanidin and (d)Delphinidin calculated by HyperChem PM3 methods.

표 1. 하이퍼캠의 PM3방법으로 계산된 안토시아닌 유도체의 열 역학적 파라메타 Table 1. Thermodynamic parameter of anthocyanin derivatives calculated by HyperChem PM3 methods.

GJMGCK_2018_v4n4_343_t0001.png 이미지

References

  1. Danila Di Majo, Maurizio La Guardia, Santo Giammanco, Laura La Neve, Marco Giammanco, The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chemistry, 111, 45-49, (2008). https://doi.org/10.1016/j.foodchem.2008.03.037
  2. Burin V, Falcao L, Gonzaga L, Fett R, Rosier J, Bordignon M, Colour, Phenolic Content and antioxidant activity of grape Juise Cienc. Tecnol. Aliment., Campi Nas, 30, 1027-1032, (2010). https://doi.org/10.1590/S0101-20612010000400030
  3. Benedicte Lorrain, Isabelle Ky, Laurent Pechamat and Pierre-Louis Teissedre, Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts. Molecules, 18, 1076-1100, (2013). https://doi.org/10.3390/molecules18011076
  4. Evangelos D. Trikas, Rigini M. Papi, Dimitrios A. Kyriakidis and George A. Zachariadis/ A Sensitive LC-MS Method for Anthocyanins and Comparison of Byproducts and Equivalent Wine Content/ Separations. 3, 18, (2016). https://doi.org/10.3390/separations3020018
  5. Papadoyannis, I., Samanidou, V., Antoniou, C. Gradient RP-HPLC Determination of Free Phenolic Acids in Wines and Wine Vinegar Samples after SPE, with Photodiode Array Identification. J. Liq. Chromatogr. Relat. Tech. 24, 2161-2176, (2001). https://doi.org/10.1081/JLC-100104899
  6. M. Kharadze, I. Djaparidze, M. Vanidze, A. Kalandia. Antioxidant Activity of Grape Chkhaveri and Its Wine Cultivated in West Georgia (Adjaria). World Academy of Science, Engineering and Technology, International Journal of Chemical and Molecular Engineering. 11 ( 2017).
  7. (a) Allinger, N. L.; Yuh, Y. QCP E, 12, 395;(1980)
  8. (b) Allinger, N. L. J. Am. Chem. Soc., 99, 8122 (1977)
  9. (c) Burkert, U.; Allinger, N. L. "MolecularMechanics" American Chemical Society, wasington D. C. (1982)
  10. J.P. Stewart, J. Comput. Chem. 10, (2), 209 (1989). https://doi.org/10.1002/jcc.540100208
  11. HyperChem, Molecular visualization and simulation program package, Hypercube, Gainsville, Fl. (1995 -2011).