DOI QR코드

DOI QR Code

Role of inflammasomes in inflammatory autoimmune rheumatic diseases

  • Yi, Young-Su (Department of Pharmaceutical Engineering, Cheongju University)
  • Received : 2017.08.07
  • Accepted : 2017.11.01
  • Published : 2018.01.01

Abstract

Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin $(IL)-1{\beta}$ and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and $Sj{\ddot{o}}gren^{\prime}s$ syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.

Keywords

References

  1. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197-216. https://doi.org/10.1146/annurev.immunol.20.083001.084359
  2. Yi YS. Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases. Immune Netw. 2016;16:337-343. https://doi.org/10.4110/in.2016.16.6.337
  3. Kayama H, Nishimura J, Takeda K. Regulation of intestinal homeostasis by innate immune cells. Immune Netw. 2013;13:227-234. https://doi.org/10.4110/in.2013.13.6.227
  4. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805-820. https://doi.org/10.1016/j.cell.2010.01.022
  5. Song DH, Lee JO. Sensing of microbial molecular patterns by Tolllike receptors. Immunol Rev. 2012;250:216-229. https://doi.org/10.1111/j.1600-065X.2012.01167.x
  6. Yi YS, Son YJ, Ryou C, Sung GH, Kim JH, Cho JY. Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm. 2014;2014:270302.
  7. Yu T, Yi YS, Yang Y, Oh J, Jeong D, Cho JY. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Mediators Inflamm. 2012;2012:979105.
  8. Byeon SE, Yi YS, Oh J, Yoo BC, Hong S, Cho JY. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2012;2012:512926.
  9. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013-1022. https://doi.org/10.1016/j.cell.2014.04.007
  10. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61-75. https://doi.org/10.1111/imr.12534
  11. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407-420. https://doi.org/10.1038/nri.2016.58
  12. Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 2012;28:137-161. https://doi.org/10.1146/annurev-cellbio-101011-155745
  13. Yi YS. Caspase-11 non-canonical inflammasome: a critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology. 2017;152:207-217. https://doi.org/10.1111/imm.12787
  14. Kaur M, Singh M, Silakari O. Inhibitors of switch kinase 'spleen tyrosine kinase' in inflammation and immune-mediated disorders: a review. Eur J Med Chem. 2013;67:434-446. https://doi.org/10.1016/j.ejmech.2013.04.070
  15. Park MH, Igarashi K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther (Seoul). 2013;21:1-9. https://doi.org/10.4062/biomolther.2012.097
  16. Ham M, Moon A. Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res. 2013;36: 1419-1431. https://doi.org/10.1007/s12272-013-0271-7
  17. Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13:435-444. https://doi.org/10.1007/s11892-013-0375-y
  18. Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol. 2009;4:365-398. https://doi.org/10.1146/annurev.pathol.4.110807.092239
  19. Kang TJ, Chae GT. The role of intracellular receptor NODs for cytokine production by macrophages infected with mycobacterium leprae. Immune Netw. 2011;11:424-427. https://doi.org/10.4110/in.2011.11.6.424
  20. Tartey S, Takeuchi O. Pathogen recognition and Toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol. 2017;36:57-73. https://doi.org/10.1080/08830185.2016.1261318
  21. Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev. 2015;95:149-178. https://doi.org/10.1152/physrev.00009.2014
  22. Kedzierski L, Montgomery J, Curtis J, Handman E. Leucine-rich repeats in host-pathogen interactions. Arch Immunol Ther Exp (Warsz). 2004;52:104-112.
  23. Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 2016;46:269-280. https://doi.org/10.1002/eji.201545839
  24. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117-121. https://doi.org/10.1038/nature10558
  25. Yang J, Zhao Y, Shao F. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol. 2015;32:78-83. https://doi.org/10.1016/j.coi.2015.01.007
  26. Diamond CE, Khameneh HJ, Brough D, Mortellaro A. Novel perspectives on non-canonical inflammasome activation. Immunotargets Ther. 2015;4:131-141.
  27. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821-832. https://doi.org/10.1016/j.cell.2010.01.040
  28. Lee MS. Role of innate immunity in diabetes and metabolism: recent progress in the study of inflammasomes. Immune Netw. 2011; 11:95-99. https://doi.org/10.4110/in.2011.11.2.95
  29. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack DM. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490:288-291. https://doi.org/10.1038/nature11419
  30. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341:1250-1253. https://doi.org/10.1126/science.1240988
  31. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszynski A, Forsberg LS, Carlson RW, Dixit VM. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341:1246-1249. https://doi.org/10.1126/science.1240248
  32. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187-192. https://doi.org/10.1038/nature13683
  33. Stowe I, Lee B, Kayagaki N. Caspase-11: arming the guards against bacterial infection. Immunol Rev. 2015;265:75-84. https://doi.org/10.1111/imr.12292
  34. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-$\beta$. Mol Cell. 2002;10:417-426. https://doi.org/10.1016/S1097-2765(02)00599-3
  35. Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet. 2006;38:240-244. https://doi.org/10.1038/ng1724
  36. Kovarova M, Hesker PR, Jania L, Nguyen M, Snouwaert JN, Xiang Z, Lommatzsch SE, Huang MT, Ting JP, Koller BH. NLRP1-dependent pyroptosis leads to acute lung injury and morbidity in mice. J Immunol. 2012;189:2006-2016. https://doi.org/10.4049/jimmunol.1201065
  37. Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397-411. https://doi.org/10.1038/nri3452
  38. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430:213-218. https://doi.org/10.1038/nature02664
  39. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin $1{\beta}$ via Ipaf. Nat Immunol. 2006;7:569-575. https://doi.org/10.1038/ni1344
  40. Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozoren N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Nunez G. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin $1{\beta}$ in salmonella-infected macrophages. Nat Immunol. 2006;7:576-582. https://doi.org/10.1038/ni1346
  41. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107:3076-3080. https://doi.org/10.1073/pnas.0913087107
  42. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477:596-600. https://doi.org/10.1038/nature10510
  43. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature. 2008;452:103-107. https://doi.org/10.1038/nature06664
  44. Alnemri ES. Sensing cytoplasmic danger signals by the inflammasome. J Clin Immunol. 2010;30:512-519. https://doi.org/10.1007/s10875-010-9419-0
  45. Kanneganti TD. Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol. 2010;10:688-698. https://doi.org/10.1038/nri2851
  46. Akhter A, Caution K, Abu Khweek A, Tazi M, Abdulrahman BA, Abdelaziz DH, Voss OH, Doseff AI, Hassan H, Azad AK, Schlesinger LS, Wewers MD, Gavrilin MA, Amer AO. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity. 2012;37:35-47. https://doi.org/10.1016/j.immuni.2012.05.001
  47. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, Leong JM, Fitzgerald KA. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 2012;150:606-619. https://doi.org/10.1016/j.cell.2012.07.007
  48. Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG, Zak DE, Tan MH, Cotter PA, Vance RE, Aderem A, Miao EA. Caspase-11 protects against bacteria that escape the vacuole. Science. 2013;339: 975-978. https://doi.org/10.1126/science.1230751
  49. Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR, Flavell RA, Zamboni DS, Roy CR. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila . Proc Natl Acad Sci U S A. 2013;110:1851-1856. https://doi.org/10.1073/pnas.1211521110
  50. Casson CN, Copenhaver AM, Zwack EE, Nguyen HT, Strowig T, Javdan B, Bradley WP, Fung TC, Flavell RA, Brodsky IE, Shin S. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog. 2013;9:e1003400. https://doi.org/10.1371/journal.ppat.1003400
  51. Gurung P, Malireddi RK, Anand PK, Demon D, Vande Walle L, Liu Z, Vogel P, Lamkanfi M, Kanneganti TD. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-$\beta$ (TRIF)-mediated caspase-11 protease production integrates Tolllike receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem. 2012;287:34474-34483. https://doi.org/10.1074/jbc.M112.401406
  52. Vigano E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat Commun. 2015;6:8761. https://doi.org/10.1038/ncomms9761
  53. Casson CN, Yu J, Reyes VM, Taschuk FO, Yadav A, Copenhaver AM, Nguyen HT, Collman RG, Shin S. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc Natl Acad Sci U S A. 2015;112:6688-6693. https://doi.org/10.1073/pnas.1421699112
  54. Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2017;42:245-254. https://doi.org/10.1016/j.tibs.2016.10.004
  55. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A. 2016;113:7858-7863. https://doi.org/10.1073/pnas.1607769113
  56. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J. Gasdermin D is an executor of pyroptosis and required for interleukin-$1{\beta}$ secretion. Cell Res. 2015;25:1285-1298. https://doi.org/10.1038/cr.2015.139
  57. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660-665. https://doi.org/10.1038/nature15514
  58. Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666-671. https://doi.org/10.1038/nature15541
  59. Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, Pillemer SR, Reveille JD, Stone JH. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58:15-25. https://doi.org/10.1002/art.23177
  60. Scott DL, Symmons DP, Coulton BL, Popert AJ. Long-term outcome of treating rheumatoid arthritis: results after 20 years. Lancet. 1987;1:1108-1111.
  61. Pincus T, Brooks RH, Callahan LF. Prediction of long-term mortality in patients with rheumatoid arthritis according to simple questionnaire and joint count measures. Ann Intern Med. 1994;120:26-34. https://doi.org/10.7326/0003-4819-120-1-199401010-00005
  62. Yi YS, Ayala-Lopez W, Kularatne SA, Low PS. Folate-targeted hapten immunotherapy of adjuvant-induced arthritis: comparison of hapten potencies. Mol Pharm. 2009;6:1228-1236. https://doi.org/10.1021/mp900070b
  63. Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376:1094-1108. https://doi.org/10.1016/S0140-6736(10)60826-4
  64. Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC; Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS), Eyre S, Churchman SM, Wilson AG, Isaacs JD, Hyrich K, Barton A, Plant D, Savic S, Cook GP, Sarzi-Puttini P, Emery P, Barrett JH, Morgan AW, McDermott MF. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis . 2014;73:1202-1210.
  65. Jenko B, Praprotnik S, Tomsic M, Dolzan V. NLRP3 and CARD8 polymorphisms influence higher disease activity in rheumatoid arthritis. J Med Biochem. 2016;35:319-323.
  66. Sui J, Li H, Fang Y, Liu Y, Li M, Zhong B, Yang F, Zou Q, Wu Y. NLRP1 gene polymorphism influences gene transcription and is a risk factor for rheumatoid arthritis in han chinese. Arthritis Rheum. 2012;64:647-654. https://doi.org/10.1002/art.33370
  67. Joosten LA, Netea MG, Fantuzzi G, Koenders MI, Helsen MM, Sparrer H, Pham CT, van der Meer JW, Dinarello CA, van den Berg WB. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-$1{\beta}$. Arthritis Rheum. 2009;60:3651-3662. https://doi.org/10.1002/art.25006
  68. Zhang L, Dong Y, Zou F, Wu M, Fan C, Ding Y. $11{\beta}$-Hydroxysteroid dehydrogenase 1 inhibition attenuates collagen-induced arthritis. Int Immunopharmacol . 2013;17:489-494. https://doi.org/10.1016/j.intimp.2013.07.015
  69. Li F, Guo N, Ma Y, Ning B, Wang Y, Kou L. Inhibition of P2X4 suppresses joint inflammation and damage in collagen-induced arthritis. Inflammation. 2014;37:146-153. https://doi.org/10.1007/s10753-013-9723-y
  70. Ippagunta SK, Brand DD, Luo J, Boyd KL, Calabrese C, Stienstra R, Van de Veerdonk FL, Netea MG, Joosten LA, Lamkanfi M, Kanneganti TD. Inflammasome-independent role of apoptosis-associated speck-like protein containing a CARD (ASC) in T cell priming is critical for collagen-induced arthritis. J Biol Chem. 2010;285:12454-12462. https://doi.org/10.1074/jbc.M109.093252
  71. Ji H, Pettit A, Ohmura K, Ortiz-Lopez A, Duchatelle V, Degott C, Gravallese E, Mathis D, Benoist C. Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J Exp Med. 2002;196:77-85. https://doi.org/10.1084/jem.20020439
  72. Walle LV, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P, Beyaert R, Elewaut D, Kanneganti TD, van Loo G, Lamkanfi M. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 2014;512:69-73. https://doi.org/10.1038/nature13322
  73. Ruscitti P, Cipriani P, Di Benedetto P, Liakouli V, Berardicurti O, Carubbi F, Ciccia F, Alvaro S, Triolo G, Giacomelli R. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-$1{\beta}$ via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients. Clin Exp Immunol. 2015;182:35-44. https://doi.org/10.1111/cei.12667
  74. Choulaki C, Papadaki G, Repa A, Kampouraki E, Kambas K, Ritis K, Bertsias G, Boumpas DT, Sidiropoulos P. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res Ther. 2015;17:257. https://doi.org/10.1186/s13075-015-0775-2
  75. Li Y, Zheng JY, Liu JQ, Yang J, Liu Y, Wang C, Ma XN, Liu BL, Xin GZ, Liu LF. Succinate/NLRP3 inflammasome induces synovial fibroblast activation: therapeutical effects of clematichinenoside AR on arthritis. Front Immunol. 2016;7:532.
  76. Shin TH, Kim HS, Kang TW, Lee BC, Lee HY, Kim YJ, Shin JH, Seo Y, Won Choi S, Lee S, Shin K, Seo KW, Kang KS. Human umbilical cord blood-stem cells direct macrophage polarization and block inflammasome activation to alleviate rheumatoid arthritis. Cell Death Dis. 2016;7:e2524. https://doi.org/10.1038/cddis.2016.442
  77. Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014;384:1878-1888. https://doi.org/10.1016/S0140-6736(14)60128-8
  78. Pontillo A, Girardelli M, Kamada AJ, Pancotto JA, Donadi EA, Crovella S, Sandrin-Garcia P. Polimorphisms in inflammasome genes are involved in the predisposition to systemic lupus erythematosus. Autoimmunity. 2012;45:271-278. https://doi.org/10.3109/08916934.2011.637532
  79. Kattah NH, Kattah MG, Utz PJ. The U1-snRNP complex: structural properties relating to autoimmune pathogenesis in rheumatic diseases. Immunol Rev. 2010;233:126-145. https://doi.org/10.1111/j.0105-2896.2009.00863.x
  80. Shin MS, Kang Y, Lee N, Kim SH, Kang KS, Lazova R, Kang I. U1-small nuclear ribonucleoprotein activates the NLRP3 inflammasome in human monocytes. J Immunol. 2012;188:4769-4775. https://doi.org/10.4049/jimmunol.1103355
  81. Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5:577-582. https://doi.org/10.1038/nrmicro1710
  82. Knight JS, Kaplan MJ. Lupus neutrophils: 'NET' gain in understanding lupus pathogenesis. Curr Opin Rheumatol. 2012;24:441-450. https://doi.org/10.1097/BOR.0b013e3283546703
  83. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, Meller S, Chamilos G, Sebasigari R, Riccieri V, Bassett R, Amuro H, Fukuhara S, Ito T, Liu YJ, Gilliet M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra19.
  84. Kahlenberg JM, Carmona-Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol. 2013;190:1217-1226. https://doi.org/10.4049/jimmunol.1202388
  85. Sano H, Takai O, Harata N, Yoshinaga K, Kodama-Kamada I, Sasaki T. Binding properties of human anti-DNA antibodies to cloned human DNA fragments. Scand J Immunol. 1989;30:51-63. https://doi.org/10.1111/j.1365-3083.1989.tb01188.x
  86. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest. 2005;115:407-417. https://doi.org/10.1172/JCI23025
  87. Shin MS, Kang Y, Lee N, Wahl ER, Kim SH, Kang KS, Lazova R, Kang I. Self double-stranded (ds)DNA induces IL-$1{\beta}$ production from human monocytes by activating NLRP3 inflammasome in the presence of anti-dsDNA antibodies. J Immunol. 2013;190:1407-1415. https://doi.org/10.4049/jimmunol.1201195
  88. Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT, Tsokos GC. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181:8761-8766. https://doi.org/10.4049/jimmunol.181.12.8761
  89. Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, Kang I. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R53. https://doi.org/10.1186/ar2964
  90. Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol. 2004;22:431-456. https://doi.org/10.1146/annurev.immunol.22.012703.104549
  91. Benoit ME, Clarke EV, Morgado P, Fraser DA, Tenner AJ. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J Immunol. 2012;188:5682-5693. https://doi.org/10.4049/jimmunol.1103760
  92. Lu A, Li H, Niu J, Wu S, Xue G, Yao X, Guo Q, Wan N, Abliz P, Yang G, An L, Meng G. Hyperactivation of the NLRP3 inflammasome in myeloid cells leads to severe organ damage in experimental lupus. J Immunol. 2017;198:1119-1129. https://doi.org/10.4049/jimmunol.1600659
  93. Zhang H, Fu R, Guo C, Huang Y, Wang H, Wang S, Zhao J, Yang N. Anti-dsDNA antibodies bind to TLR4 and activate NLRP3 inflammasome in lupus monocytes/macrophages. J Transl Med. 2016; 14:156. https://doi.org/10.1186/s12967-016-0911-z
  94. Yang Q, Yu C, Yang Z, Wei Q, Mu K, Zhang Y, Zhao W, Wang X, Huai W, Han L. Deregulated NLRP3 and NLRP1 inflammasomes and their correlations with disease activity in systemic lupus erythematosus. J Rheumatol. 2014;41:444-452. https://doi.org/10.3899/jrheum.130310
  95. Lech M, Lorenz G, Kulkarni OP, Grosser MO, Stigrot N, Darisipudi MN, Gunthner R, Wintergerst MW, Anz D, Susanti HE, Anders HJ. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-$\beta$ receptor signalling. Ann Rheum Dis. 2015;74:2224-2235. https://doi.org/10.1136/annrheumdis-2014-205496
  96. Sester DP, Sagulenko V, Thygesen SJ, Cridland JA, Loi YS, Cridland SO, Masters SL, Genske U, Hornung V, Andoniou CE, Sweet MJ, Degli-Esposti MA, Schroder K, Stacey KJ. Deficient NLRP3 and AIM2 inflammasome function in autoimmune NZB mice. J Immunol. 2015;195:1233-1241. https://doi.org/10.4049/jimmunol.1402859
  97. Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol. 2006;6:823-835. https://doi.org/10.1038/nri1957
  98. Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN. TLRdependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med. 2007;13:543-551. https://doi.org/10.1038/nm1590
  99. Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol. 2013;33: 925-937. https://doi.org/10.1007/s10875-013-9881-6
  100. Ding L, Dong G, Zhang D, Ni Y, Hou Y. The regional function of cGAS/STING signal in multiple organs: One of culprit behind systemic lupus erythematosus? Med Hypotheses . 2015;85:846-849. https://doi.org/10.1016/j.mehy.2015.09.026
  101. Panchanathan R, Xin H, Choubey D. Disruption of mutually negative regulatory feedback loop between interferon-inducible p202 protein and the E2F family of transcription factors in lupus-prone mice. J Immunol. 2008;180:5927-5934. https://doi.org/10.4049/jimmunol.180.9.5927
  102. Haywood ME, Rose SJ, Horswell S, Lees MJ, Fu G, Walport MJ, Morley BJ. Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun. 2006;7:250-263. https://doi.org/10.1038/sj.gene.6364294
  103. Choubey D, Panchanathan R. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol Lett. 2008;119:32-41. https://doi.org/10.1016/j.imlet.2008.06.001
  104. Choubey D, Duan X, Dickerson E, Ponomareva L, Panchanathan R, Shen H, Srivastava R. Interferon-inducible p200-family proteins as novel sensors of cytoplasmic DNA: role in inflammation and autoimmunity. J Interferon Cytokine Res. 2010;30:371-380. https://doi.org/10.1089/jir.2009.0096
  105. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323:1057-1060. https://doi.org/10.1126/science.1169841
  106. Yin Q, Sester DP, Tian Y, Hsiao YS, Lu A, Cridland JA, Sagulenko V, Thygesen SJ, Choubey D, Hornung V, Walz T, Stacey KJ, Wu H. Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep. 2013;4:327-339. https://doi.org/10.1016/j.celrep.2013.06.024
  107. Panchanathan R, Duan X, Shen H, Rathinam VA, Erickson LD, Fitzgerald KA, Choubey D. Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. J Immunol. 2010;185:7385-7393. https://doi.org/10.4049/jimmunol.1002468
  108. Kahlenberg JM, Thacker SG, Berthier CC, Cohen CD, Kretzler M, Kaplan MJ. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol. 2011;187:6143-6156. https://doi.org/10.4049/jimmunol.1101284
  109. Tsai PY, Ka SM, Chang JM, Chen HC, Shui HA, Li CY, Hua KF, Chang WL, Huang JJ, Yang SS, Chen A. Epigallocatechin-3-gallate prevents lupus nephritis development in mice via enhancing the Nrf2 antioxidant pathway and inhibiting NLRP3 inflammasome activation. Free Radic Biol Med. 2011;51:744-754. https://doi.org/10.1016/j.freeradbiomed.2011.05.016
  110. Zhao J, Zhang H, Huang Y, Wang H, Wang S, Zhao C, Liang Y, Yang N. Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-${\kappa}B$ activation. Int Immunopharmacol. 2013;17:116-122. https://doi.org/10.1016/j.intimp.2013.05.027
  111. Zhao J, Wang H, Huang Y, Zhang H, Wang S, Gaskin F, Yang N, Fu SM. Lupus nephritis: glycogen synthase kinase $3{\beta}$ promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice. Arthritis Rheumatol. 2015;67:1036-1044. https://doi.org/10.1002/art.38993
  112. Ka SM, Lin JC, Lin TJ, Liu FC, Chao LK, Ho CL, Yeh LT, Sytwu HK, Hua KF, Chen A. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation. Arthritis Res Ther. 2015;17:331. https://doi.org/10.1186/s13075-015-0844-6
  113. Li M, Shi X, Qian T, Li J, Tian Z, Ni B, Hao F. A20 overexpression alleviates pristine-induced lupus nephritis by inhibiting the NF-${\kappa}B$ and NLRP3 inflammasome activation in macrophages of mice. Int J Clin Exp Med. 2015;8:17430-17440.
  114. Yuan Y, Liu Z. Isoflurane attenuates murine lupus nephritis by inhibiting NLRP3 inflammasome activation. Int J Clin Exp Med. 2015;8:17730-17738.
  115. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev. 2011;63:641-683. https://doi.org/10.1124/pr.110.003129
  116. Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol. 2013; 3:414.
  117. Franceschini A, Capece M, Chiozzi P, Falzoni S, Sanz JM, Sarti AC, Bonora M, Pinton P, Di Virgilio F. The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J. 2015;29:2450-2461. https://doi.org/10.1096/fj.14-268714
  118. Karmakar M, Katsnelson MA, Dubyak GR, Pearlman E. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-$1{\beta}$ secretion in response to ATP. Nat Commun. 2016;7:10555. https://doi.org/10.1038/ncomms10555
  119. Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di Virgilio F. P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed). 2011;3:1443-1456.
  120. Zhao J, Wang H, Dai C, Wang H, Zhang H, Huang Y, Wang S, Gaskin F, Yang N, Fu SM. P2X7 blockade attenuates murine lupusnephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum. 2013;65:3176-3185. https://doi.org/10.1002/art.38174
  121. Kahlenberg JM, Yalavarthi S, Zhao W, Hodgin JB, Reed TJ, Tsuji NM, Kaplan MJ. An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis Rheumatol. 2014;66:152-162. https://doi.org/10.1002/art.38225
  122. Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of ankylosing spondylitis - recent advances and future directions. Nat Rev Rheumatol. 2017;13:359-367. https://doi.org/10.1038/nrrheum.2017.56
  123. Bakland G, Gran JT, Nossent JC. Increased mortality in ankylosing spondylitis is related to disease activity. Ann Rheum Dis. 2011; 70:1921-1925. https://doi.org/10.1136/ard.2011.151191
  124. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, Marshall M, Kenna TJ, Triolo G, Brown MA. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 2015;67:686-691. https://doi.org/10.1002/art.38967
  125. Tsui FW, Tsui HW, Akram A, Haroon N, Inman RD. The genetic basis of ankylosing spondylitis: new insights into disease pathogenesis. Appl Clin Genet. 2014;7:105-115.
  126. Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis-insights into pathogenesis. Nat Rev Rheumatol. 2016;12:81-91. https://doi.org/10.1038/nrrheum.2015.133
  127. Bidad K, Gracey E, Hemington KS, Mapplebeck JCS, Davis KD, Inman RD. Pain in ankylosing spondylitis: a neuro-immune collaboration. Nat Rev Rheumatol. 2017;13:410-420. https://doi.org/10.1038/nrrheum.2017.92
  128. Dean LE, Jones GT, MacDonald AG, Downham C, Sturrock RD, Macfarlane GJ. Global prevalence of ankylosing spondylitis. Rheumatology (Oxford). 2014;53:650-657. https://doi.org/10.1093/rheumatology/ket387
  129. Carter ET, McKenna CH, Brian DD, Kurland LT. Epidemiology of Ankylosing spondylitis in Rochester, Minnesota, 1935-1973. Arthritis Rheum. 1979;22:365-370. https://doi.org/10.1002/art.1780220408
  130. Akkoc N, Khan MA. Overestimation of the prevalence of ankylosing spondylitis in the Berlin study: comment on the article by Braun et al. Arthritis Rheum. 2005;52:4048-4049; author reply 4049-4050.
  131. Hanova P, Pavelka K, Holcatova I, Pikhart H. Incidence and prevalence of psoriatic arthritis, ankylosing spondylitis, and reactive arthritis in the first descriptive population-based study in the Czech Republic. Scand J Rheumatol. 2010;39:310-317. https://doi.org/10.3109/03009740903544212
  132. Bakland G, Nossent HC, Gran JT. Incidence and prevalence of ankylosing spondylitis in Northern Norway. Arthritis Rheum. 2005; 53:850-855. https://doi.org/10.1002/art.21577
  133. Koko V, Ndrepepa A, Skenderaj S, Ploumis A, Backa T, Tafaj A. An epidemiological study on ankylosing spondylitis in southern Albania. Mater Sociomed. 2014;26:26-29. https://doi.org/10.5455/msm.2014.26.26-29
  134. Kaipiainen-Seppanen O, Aho K, Heliovaara M. Incidence and prevalence of ankylosing spondylitis in Finland. J Rheumatol. 1997;24: 496-499.
  135. Alamanos Y, Papadopoulos NG, Voulgari PV, Karakatsanis A, Siozos C, Drosos AA. Epidemiology of ankylosing spondylitis in Northwest Greece, 1983-2002. Rheumatology (Oxford). 2004;43:615-618. https://doi.org/10.1093/rheumatology/keh133
  136. Tan AL, Marzo-Ortega H, O'Connor P, Fraser A, Emery P, McGonagle D. Efficacy of anakinra in active ankylosing spondylitis: a clinical and magnetic resonance imaging study. Ann Rheum Dis. 2004;63:1041-1045. https://doi.org/10.1136/ard.2004.020800
  137. Kastbom A, Klingberg E, Verma D, Carlsten H, Forsblad-d'Elia H, Wesamaa J, Cedergren J, Eriksson P, Soderkvist P. Genetic variants in CARD8 but not in NLRP3 are associated with ankylosing spondylitis. Scand J Rheumatol. 2013;42:465-468. https://doi.org/10.3109/03009742.2013.779020
  138. Son CN, Bang SY, Kim JH, Choi CB, Kim TH, Jun JB. Caspase-1 level in synovial fluid is high in patients with spondyloarthropathy but not in patients with gout. J Korean Med Sci. 2013;28:1289-1292. https://doi.org/10.3346/jkms.2013.28.9.1289
  139. Kiripolsky J, McCabe LG, Kramer JM. Innate immunity in Sjogren's syndrome. Clin Immunol. 2017;182:4-13. https://doi.org/10.1016/j.clim.2017.04.003
  140. Stefanski AL, Tomiak C, Pleyer U, Dietrich T, Burmester GR, Dorner T. The diagnosis and treatment of Sjogren's syndrome. Dtsch Arztebl Int. 2017;114:354-361.
  141. Malladi AS, Sack KE, Shiboski SC, Shiboski CH, Baer AN, Banushree R, Dong Y, Helin P, Kirkham BW, Li M, Sugai S, Umehara H, Vivino FB, Vollenweider CF, Zhang W, Zhao Y, Greenspan JS, Daniels TE, Criswell LA. Primary Sjogren's syndrome as a systemic disease: a study of participants enrolled in an international Sjogren's syndrome registry. Arthritis Care Res (Hoboken). 2012;64:911-918. https://doi.org/10.1002/acr.21610
  142. Tomiak C, Dorner T. Sjogren's syndrome. Current aspects from a rheumatological point of view. Z Rheumatol. 2006;65:505-517; quiz 518-519. https://doi.org/10.1007/s00393-006-0101-0
  143. Westhoff G, Zink A. Epidemiology of primary Sjorgren's syndrome. Z Rheumatol . 2010;69:41-49. https://doi.org/10.1007/s00393-009-0518-3
  144. Qin B, Wang J, Yang Z, Yang M, Ma N, Huang F, Zhong R. Epidemiology of primary Sjogren's syndrome: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74:1983-1989.
  145. Killedar SJ, Eckenrode SE, McIndoe RA, She JX, Nguyen CQ, Peck AB, Cha S. Early pathogenic events associated with Sjogren's syndrome (SjS)-like disease of the NOD mouse using microarray analysis. Lab Invest. 2006;86:1243-1260. https://doi.org/10.1038/labinvest.3700487
  146. Bulosan M, Pauley KM, Yo K, Chan EK, Katz J, Peck AB, Cha S. Inflammatory caspases are critical for enhanced cell death in the target tissue of Sjogren's syndrome before disease onset. Immunol Cell Biol. 2009;87:81-90. https://doi.org/10.1038/icb.2008.70
  147. Baldini C, Rossi C, Ferro F, Santini E, Seccia V, Donati V, Solini A. The P2X7 receptor-inflammasome complex has a role in modulating the inflammatory response in primary Sjogren's syndrome. J Intern Med. 2013;274:480-489. https://doi.org/10.1111/joim.12115
  148. Niu L, Zhang S, Wu J, Chen L, Wang Y. Upregulation of NLRP3 inflammasome in the tears and ocular surface of dry eye patients. PLoS One. 2015;10:e0126277. https://doi.org/10.1371/journal.pone.0126277
  149. Manoussakis MN, Boiu S, Korkolopoulou P, Kapsogeorgou EK, Kavantzas N, Ziakas P, Patsouris E, Moutsopoulos HM. Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjogren's syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development. Arthritis Rheum. 2007;56:3977-3988. https://doi.org/10.1002/art.23073
  150. Yamada A, Arakaki R, Kudo Y, Ishimaru N. Targeting IL-1 in Sjogren's syndrome. Expert Opin Ther Targets. 2013;17:393-401. https://doi.org/10.1517/14728222.2013.754427
  151. Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjogren's syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J Immunol. 2008;181:2898-2906. https://doi.org/10.4049/jimmunol.181.4.2898
  152. Bombardieri M, Barone F, Pittoni V, Alessandri C, Conigliaro P, Blades MC, Priori R, McInnes IB, Valesini G, Pitzalis C. Increased circulating levels and salivary gland expression of interleukin-18 in patients with Sjogren's syndrome: relationship with autoantibody production and lymphoid organization of the periductal inflammatory infiltrate. Arthritis Res Ther. 2004;6:R447-456. https://doi.org/10.1186/ar1209
  153. Delaleu N, Immervoll H, Cornelius J, Jonsson R. Biomarker profiles in serum and saliva of experimental Sjogren's syndrome: associations with specific autoimmune manifestations. Arthritis Res Ther. 2008;10:R22. https://doi.org/10.1186/ar2375
  154. Woods LT, Camden JM, Batek JM, Petris MJ, Erb L, Weisman GA. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol. 2012;303:C790-801. https://doi.org/10.1152/ajpcell.00072.2012
  155. Shin SM, Choi DK, Jung K, Bae J, Kim JS, Park SW, Song KH, Kim YS. Antibody targeting intracellular oncogenic Ras mutants exerts anti-tumour effects after systemic administration. Nat Commun. 2017;8:15090. https://doi.org/10.1038/ncomms15090

Cited by

  1. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease vol.9, pp.None, 2018, https://doi.org/10.3389/fneur.2018.01062
  2. Routes to cell death in animal and plant kingdoms: from classic apoptosis to alternative ways to die-a review vol.29, pp.2, 2018, https://doi.org/10.1007/s12210-018-0704-9
  3. Integrative analysis of Multiple Sclerosis using a systems biology approach vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-24032-8
  4. Role of the NLRP3 inflammasome in cancer vol.17, pp.1, 2018, https://doi.org/10.1186/s12943-018-0900-3
  5. Cryo-EM structure of the NLRC4CARD filament provides insights into how symmetric and asymmetric supramolecular structures drive inflammasome assembly vol.293, pp.52, 2018, https://doi.org/10.1074/jbc.ra118.006050
  6. Endoplasmic Reticulum Stress-Induced NLRP1 Inflammasome Activation Contributes to Myocardial Ischemia/Reperfusion Injury vol.51, pp.4, 2018, https://doi.org/10.1097/shk.0000000000001175
  7. Rheumatic heart disease in the modern era: recent developments and current challenges vol.52, pp.None, 2018, https://doi.org/10.1590/0037-8682-0041-2019
  8. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling vol.11, pp.None, 2018, https://doi.org/10.3389/fnagi.2019.00143
  9. Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis vol.10, pp.None, 2018, https://doi.org/10.3389/fimmu.2019.00266
  10. Fatigue, Sleep, and Autoimmune and Related Disorders vol.10, pp.None, 2018, https://doi.org/10.3389/fimmu.2019.01827
  11. Immunopathogenic Mechanisms and Novel Immune-Modulated Therapies in Rheumatoid Arthritis vol.20, pp.6, 2019, https://doi.org/10.3390/ijms20061332
  12. Phytochemicals as Novel Therapeutic Strategies for NLRP3 Inflammasome-Related Neurological, Metabolic, and Inflammatory Diseases vol.20, pp.12, 2019, https://doi.org/10.3390/ijms20122876
  13. The Relationship of Ankylosing Spondylitis and Subclinical Atherosclerosis: A Systemic Review and Meta-Analysis vol.70, pp.6, 2019, https://doi.org/10.1177/0003319718814309
  14. Therapeutic potential of enhancer of zeste homolog 2 in autoimmune diseases vol.23, pp.12, 2018, https://doi.org/10.1080/14728222.2019.1696309
  15. Archidendron lucidum Exerts Anti-Inflammatory Effects by Targeting PDK1 in the NF- $ \kappa $ B Pathway vol.48, pp.2, 2018, https://doi.org/10.1142/s0192415x20500226
  16. Functional crosstalk between non‐canonical caspase‐11 and canonical NLRP3 inflammasomes during infection‐mediated inflammation vol.159, pp.2, 2020, https://doi.org/10.1111/imm.13134
  17. IL1β, IL18, NFKB1 and IFNG gene interactions are associated with severity of rheumatoid arthritis: A pilot study vol.53, pp.2, 2020, https://doi.org/10.1080/08916934.2019.1710831
  18. The Role and Impact of Extracellular Vesicles in the Modulation and Delivery of Cytokines during Autoimmunity vol.21, pp.19, 2018, https://doi.org/10.3390/ijms21197096
  19. Postexercise Inflammasome Activation and IL-1β Production Mitigated by Flavonoid Supplementation in Cyclists vol.30, pp.6, 2020, https://doi.org/10.1123/ijsnem.2020-0084
  20. Postexercise Inflammasome Activation and IL-1β Production Mitigated by Flavonoid Supplementation in Cyclists vol.30, pp.6, 2020, https://doi.org/10.1123/ijsnem.2020-0084
  21. Caspase-11 Noncanonical Inflammasome: A Novel Key Player in Murine Models of Neuroinflammation and Multiple Sclerosis vol.28, pp.4, 2018, https://doi.org/10.1159/000516064
  22. Flavonoids: Nutraceuticals for Rheumatic Diseases via Targeting of Inflammasome Activation vol.22, pp.2, 2018, https://doi.org/10.3390/ijms22020488
  23. Chinese Herbal Medicine Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating Endoplasmic Reticulum Stress vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/4963346
  24. Rheumatic Heart Valve Disease Pathophysiology and Underlying Mechanisms vol.7, pp.None, 2018, https://doi.org/10.3389/fcvm.2020.612716
  25. Pyroptosis in Osteoblasts: A Novel Hypothesis Underlying the Pathogenesis of Osteoporosis vol.11, pp.None, 2021, https://doi.org/10.3389/fendo.2020.548812
  26. An overview of disease models for NLRP3 inflammasome over-activation vol.16, pp.4, 2021, https://doi.org/10.1080/17460441.2021.1844179
  27. Association between inflammasome-related polymorphisms and psoriatic arthritis vol.50, pp.3, 2021, https://doi.org/10.1080/03009742.2020.1834611
  28. Functional Interplay between Methyltransferases and Inflammasomes in Inflammatory Responses and Diseases vol.22, pp.14, 2018, https://doi.org/10.3390/ijms22147580
  29. NLRP3 Deficiency in Hepatocellular Carcinoma Enhances Surveillance of NK-92 through a Modulation of MICA/B vol.22, pp.17, 2018, https://doi.org/10.3390/ijms22179285
  30. The monomer derivative of paeoniflorin inhibits macrophage pyroptosis via regulating TLR4/ NLRP3/ GSDMD signaling pathway in adjuvant arthritis rats vol.101, pp.no.pa, 2018, https://doi.org/10.1016/j.intimp.2021.108169
  31. Distinct axial and lateral interactions within homologous filaments dictate the signaling specificity and order of the AIM2-ASC inflammasome vol.12, pp.1, 2018, https://doi.org/10.1038/s41467-021-23045-8
  32. Clinical Significance of Elevated Serum Caspase-1 Levels in Patients With Ankylosing Spondylitis vol.42, pp.2, 2022, https://doi.org/10.3343/alm.2022.42.2.293