DOI QR코드

DOI QR Code

Ethyl linoleate inhibits α-MSH-induced melanogenesis through Akt/GSK3β/β-catenin signal pathway

  • Ko, Gyeong-A (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Kim Cho, Somi (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
  • Received : 2017.07.02
  • Accepted : 2017.09.08
  • Published : 2018.01.01

Abstract

Ethyl linoleate is an unsaturated fatty acid used in many cosmetics for its various attributes, such as antibacterial and anti-inflammatory properties and clinically proven to be an effective anti-acne agent. In this study, we investigated the effect of ethyl linoleate on the melanogenesis and the mechanism underlying its action on melanogenesis in B16F10 murine melanoma cells. Our results revealed that ethyl linoleate significantly inhibited melanin content and intracellular tyrosinase activity in ${\alpha}$-MSH-induced B16F10 cells, but it did not directly inhibit activity of mushroom tyrosinase. Ethyl linoleate inhibited the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase related protein 1 (TRP1) in governing melanin pigment synthesis. We observed that ethyl linoleate inhibited phosphorylation of Akt and glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) and reduced the level of ${\beta}-catenin$, suggesting that ethyl linoleate inhibits melanogenesis through $Akt/GSK3{\beta}/{\beta}-catenin$ signal pathway. Therefore, we propose that ethyl linoleate may be useful as a safe whitening agent in cosmetic and a potential therapeutic agent for reducing skin hyperpigmentation in clinics.

Keywords

References

  1. Clarys P, Alewaeters K, Lambrecht R, Barel AO. Skin color measurements: comparison between three instruments: the $Chromameter^{(R)}$, the $DermaSpectrometer^{(R)}$ and the $Mexameter^{(R)}$. Skin Res Technol. 2000;6:230-238. https://doi.org/10.1034/j.1600-0846.2000.006004230.x
  2. Sturm RA. Skin colour and skin cancer - MC1R, the genetic link. Melanoma Res . 2002;12:405-416. https://doi.org/10.1097/00008390-200209000-00001
  3. Shoag J, Haq R, Zhang M, Liu L, Rowe GC, Jiang A, Koulisis N, Farrel C, Amos CI, Wei Q, Lee JE, Zhang J, Kupper TS, Qureshi AA, Cui R, Han J, Fisher DE, Arany Z. PGC-1 coactivators regulate MITF and the tanning response. Mol Cell. 2013;49:145-157. https://doi.org/10.1016/j.molcel.2012.10.027
  4. Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, D'Orazio J, Fung CY, Schanbacher CF, Granter SR, Fisher DE. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007;128:853-864. https://doi.org/10.1016/j.cell.2006.12.045
  5. Hsiao JJ, Fisher DE. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys. 2014;563:28-34. https://doi.org/10.1016/j.abb.2014.07.019
  6. Speeckaert R, Van Gele M, Speeckaert MM, Lambert J, van Geel N. The biology of hyperpigmentation syndromes. Pigment Cell Melanoma Res. 2014;27:512-524. https://doi.org/10.1111/pcmr.12235
  7. Chung KW, Jeong HO, Jang EJ, Choi YJ, Kim DH, Kim SR, Lee KJ, Lee HJ, Chun P, Byun Y, Moon HR, Chung HY. Characterization of a small molecule inhibitor of melanogenesis that inhibits tyrosinase activity and scavenges nitric oxide (NO). Biochim Biophys Acta. 2013;1830:4752-4761. https://doi.org/10.1016/j.bbagen.2013.06.002
  8. Hearing VJ. Determination of melanin synthetic pathways. J Invest Dermatol. 2011;131:E8-11. https://doi.org/10.1038/skinbio.2011.4
  9. Jacquemin P, Lannoy VJ, O'Sullivan J, Read A, Lemaigre FP, Rousseau GG. The transcription factor onecut-2 controls the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun. 2001;285:1200-1205. https://doi.org/10.1006/bbrc.2001.5294
  10. Saito H, Yasumoto K, Takeda K, Takahashi K, Fukuzaki A, Orikasa S, Shibahara S. Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancing factor 1. J Biol Chem. 2002;277:28787-28794. https://doi.org/10.1074/jbc.M203719200
  11. Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M, Goossens M. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet . 2000;9:1907-1917. https://doi.org/10.1093/hmg/9.13.1907
  12. Price ER, Horstmann MA, Wells AG, Weilbaecher KN, Takemoto CM, Landis MW, Fisher DE. $\alpha$-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome. J Biol Chem. 1998;273:33042-33047. https://doi.org/10.1074/jbc.273.49.33042
  13. Zhu PY, Yin WH, Wang MR, Dang YY, Ye XY. Andrographolide suppresses melanin synthesis through Akt/$GSK3{\beta}$/$\beta$-catenin signal pathway. J Dermatol Sci. 2015;79:74-83. https://doi.org/10.1016/j.jdermsci.2015.03.013
  14. Hwang I, Park JH, Park HS, Choi KA, Seol KC, Oh SI, Kang S, Hong S. Neural stem cells inhibit melanin production by activation of Wnt inhibitors. J Dermatol Sci. 2013;72:274-283. https://doi.org/10.1016/j.jdermsci.2013.08.006
  15. Bellei B, Pitisci A, Catricala C, Larue L, Picardo M. Wnt/$\beta$-catenin signaling is stimulated by $\alpha$-melanocyte-stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell Melanoma Res . 2011;24:309-325. https://doi.org/10.1111/j.1755-148X.2010.00800.x
  16. Nakagawa M, Kawai K, Kawai K. Contact allergy to kojic acid in skin care products. Contact Dermatitis. 1995;32:9-13. https://doi.org/10.1111/j.1600-0536.1995.tb00832.x
  17. Takizawa T, Imai T, Onose J, Ueda M, Tamura T, Mitsumori K, Izumi K, Hirose M. Enhancement of hepatocarcinogenesis by kojic acid in rat two-stage models after initiation with N-bis(2-hydroxypropyl) nitrosamine or N-diethylnitrosamine. Toxicol Sci. 2004;81:43-49. https://doi.org/10.1093/toxsci/kfh195
  18. Cheng SL, Liu RH, Sheu JN, Chen ST, Sinchaikul S, Tsay GJ. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J Biomed Sci. 2007;14:87-105. https://doi.org/10.1007/s11373-006-9130-6
  19. Bolognia JL, Sodi SA, Osber MP, Pawelek JM. Enhancement of the depigmenting effect of hydroquinone by cystamine and buthionine sulfoximine. Br J Dermatol. 1995;133:349-357. https://doi.org/10.1111/j.1365-2133.1995.tb02660.x
  20. Makino ET, Mehta RC, Banga A, Jain P, Sigler ML, Sonti S. Evaluation of a hydroquinone-free skin brightening product using in vitro inhibition of melanogenesis and clinical reduction of ultravioletinduced hyperpigmentation. J Drugs Dermatol. 2013;12:s16-20.
  21. Baynes RE, Hodgson E. Absorption and distribution of toxicants. In: Hodgson E, editor. A textbook of modern toxicology. 3rd ed. New Jersey: John Wiley & Sons; 2004. p.75-110.
  22. Lee MH, Kim HJ, Ha DJ, Paik JH, Kim HY. Therapeutic effect of topical application of linoleic acid and lincomycin in combination with betamethasone valerate in melasma patients. J Korean Med Sci. 2002;17:518-523. https://doi.org/10.3346/jkms.2002.17.4.518
  23. Thirion L, Pierard-Franchimont C, Pierard GE. Whitening effect of a dermocosmetic formulation: a randomized double-blind controlled study on melasma. Int J Cosmet Sci. 2006;28:263-267. https://doi.org/10.1111/j.1467-2494.2006.00312.x
  24. Morganti P, Ruocco E, Wolf R, Ruocco V. Percutaneous absorption and delivery systems. Clin Dermatol. 2001;19:489-501. https://doi.org/10.1016/S0738-081X(01)00183-3
  25. Ando H, Ryu A, Hashimoto A, Oka M, Ichihashi M. Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Dermatol Res. 1998;290:375-381. https://doi.org/10.1007/s004030050320
  26. Ando H, Watabe H, Valencia JC, Yasumoto K, Furumura M, Funasaka Y, Oka M, Ichihashi M, Hearing VJ. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase: a new aspect of ubiquitin-proteasome function. J Biol Chem. 2004;279:15427-15433. https://doi.org/10.1074/jbc.M313701200
  27. Ando H, Wen ZM, Kim HY, Valencia JC, Costin GE, Watabe H, Yasumoto K, Niki Y, Kondoh H, Ichihashi M, Hearing VJ. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway. Biochem J. 2006;394:43-50. https://doi.org/10.1042/BJ20051419
  28. Park SY, Seetharaman R, Ko MJ, Kim DY, Kim TH, Yoon MK, Kwak JH, Lee SJ, Bae YS, Choi YW. Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. Int Immunopharmacol. 2014;19:253-261. https://doi.org/10.1016/j.intimp.2014.01.017
  29. Jelenko C, Wheeler ML, Anderson AP, Callaway BD, McKinley JC. Studies in burns: XIV, Heling in burn wounds treated with Ethyl Linoleate alone or in combination with selected topical antibacterial agents. Ann Surg. 1975;182:562-566. https://doi.org/10.1097/00000658-197511000-00005
  30. Charakida A, Charakida M, Chu AC. Double-blind, randomized, placebo-controlled study of a lotion containing triethyl citrate and ethyl linoleate in the treatment of acne vulgaris. Br J Dermatol. 2007;157:569-574. https://doi.org/10.1111/j.1365-2133.2007.08083.x
  31. Huh S, Kim YS, Jung E, Lim J, Jung KS, Kim MO, Lee J, Park D. Melanogenesis inhibitory effect of fatty acid alkyl esters isolated from Oxalis triangularis . Biol Pharm Bull. 2010;33:1242-1245. https://doi.org/10.1248/bpb.33.1242
  32. Hosoi J, Abe E, Suda T, Kuroki T. Regulation of melanin synthesis of B16 mouse melanoma cells by $1{\alpha}$,25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 1985;45:1474-1478.
  33. Newton RA, Cook AL, Roberts DW, Leonard JH, Sturm RA. Posttranscriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J Invest Dermatol. 2007;127:2216-2227. https://doi.org/10.1038/sj.jid.5700840
  34. Takahashi H, Parsons PG. Rapid and reversible inhibition of tyrosinase activity by glucosidase inhibitors in human melanoma cells. J Invest Dermatol. 1992;98:481-487. https://doi.org/10.1111/1523-1747.ep12499862
  35. Song YW, Cho SK. Phytol induces apoptosis and ROS-mediated protective autophagy in human gastric adenocarcinoma AGS cells. Biochem Anal Biochem. 2015;4:4.
  36. Lehman AJ, Patterson WI, Davidow B, Hagan EC, Woodard G, Laug EP, Frawley JP, Fitzhugh OG, Bourke AR, Draize JH, Nelson AA, Vos BJ. Procedures for the appraisal of the toxicity of chemicals in foods, drugs and cosmetics. Food Drug Cosmet Law J. 1955; 10:679-748.
  37. Tomankova K, Kejlova K, Binder S, Daskova A, Zapletalova J, Bendova H, Kolarova H, Jirova D. In vitro cytotoxicity and phototoxicity study of cosmetics colorants. Toxicol In Vitro. 2011;25:1242-1250. https://doi.org/10.1016/j.tiv.2011.04.026
  38. Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J Invest Dermatol. 2007;127:751-761. https://doi.org/10.1038/sj.jid.5700683
  39. Park KC, Huh SY, Choi HR, Kim DS. Biology of melanogenesis and the search for hypopigmenting agents. Dermatologica Sinica. 2010;28:53-58. https://doi.org/10.1016/S1027-8117(10)60011-0
  40. Oka M, Nagai H, Ando H, Fukunaga M, Matsumura M, Araki K, Ogawa W, Miki T, Sakaue M, Tsukamoto K, Konishi H, Kikkawa U, Ichihashi M. Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J Invest Dermatol. 2000;115:699-703. https://doi.org/10.1046/j.1523-1747.2000.00095.x
  41. Wu M, Hemesath TJ, Takemoto CM, Horstmann MA, Wells AG, Price ER, Fisher DZ, Fisher DE. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 2000;14:301-312.
  42. Mansky KC, Sankar U, Han J, Ostrowski MC. Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-${\kappa}B$ ligand signaling. J Biol Chem. 2002;277:11077-11083. https://doi.org/10.1074/jbc.M111696200
  43. Bu J, Ma PC, Chen ZQ, Zhou WQ, Fu YJ, Li LJ, Li CR. Inhibition of MITF and tyrosinase by paeonol-stimulated JNK/SAPK to reduction of phosphorylated CREB. Am J Chin Med. 2008;36:245-263. https://doi.org/10.1142/S0192415X08005758
  44. Khaled M, Larribere L, Bille K, Ortonne JP, Ballotti R, Bertolotto C. Microphthalmia associated transcription factor is a target of the phosphatidylinositol-3-kinase pathway. J Invest Dermatol. 2003;121:831-836. https://doi.org/10.1046/j.1523-1747.2003.12420.x
  45. Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of $\beta$-catenin by human Axin and its association with the APC tumor suppressor, $\beta$-catenin and $GSK3{\beta}$. Curr Biol. 1998;8:573-581. https://doi.org/10.1016/S0960-9822(98)70226-X

Cited by

  1. Evaluation of lipid oxidation mechanisms in beverages and cosmetics via analysis of lipid hydroperoxide isomers vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-43645-1
  2. Purification of Ethyl Linoleate from Foxtail Millet (Setaria italica) Bran Oil via Urea Complexation and Molecular Distillation vol.10, pp.8, 2018, https://doi.org/10.3390/foods10081925
  3. Effect of the Melicoccus bijugatus leaf and fruit extracts and acidic solvents on the antimicrobial properties of chitosan–starch films vol.131, pp.3, 2018, https://doi.org/10.1111/jam.15025
  4. GC-MS Analysis and Biomedical Therapy of Oil from n-Hexane Fraction of Scutellaria edelbergii Rech. f.: In Vitro, In Vivo, and In Silico Approach vol.26, pp.24, 2018, https://doi.org/10.3390/molecules26247676