DOI QR코드

DOI QR Code

Smoke Generation by Burning Test of Cypress Plates Treated with Boron Compounds

붕소 화합물로 처리된 편백목재의 연소시험에 의한 연기발생

  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Jin, Eui (Fire Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2018.07.26
  • Accepted : 2018.08.08
  • Published : 2018.12.10

Abstract

Experiments on combustion gases generation of untreated cypress specimens or treated with boric acid, ammonium pentaborate, and boric acid/ammonium pentaborate additive were carried out. Test specimens were painted three times with 15 wt% boron compound aqueous solutions. After drying, the generation of combustion gas was analyzed using a cone calorimeter (ISO 5660-1). As a result, comparing to untreated specimen, the smoke performance index (SPI) of the specimens treated with the boron compound increased by 1.37 to 2.68 times and the smoke growth index (SGI) decreased by 29.4 to 52.9%. The smoke intensity (SI) of the specimens treated with boron compounds is expected to be 1.16 to 3.92 times lower than that of untreated specimens, resulting in lower smoke and fire hazards. Also, the maximum carbon monoxide ($CO_{peak}$) concentration of specimens treated with boron compounds was 12.7 to 30.9% lower than that of untreated specimens. However, it was measured to produce fatal toxicities from 1.52 to 1.92 times higher than that of permissible exposure limits (PEL) by Occupational Safety and Health Administration (OSHA). The boron compounds played a role in reducing carbon monoxide, but it did not meet the expectation of reduction effect because of the high concentration of carbon monoxide in cypress itself.

붕산, 5붕산암모늄, 붕산/5붕산암모늄 첨가제로 처리한 편백목재 시험편의 연소가스 발생에 관한 시험을 하였다. 15 wt%의 붕소 화합물 수용액으로 각각 편백목재 시험편에 붓으로 3회 칠하였다. 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소가스를 분석하였다. 그 결과, 붕소화합물로 처리한 시험편의 연기성능지수(SPI)는 공시편 보다 1.37~2.68배 증가하였고, 연기성장지수(SGI)는 29.4~52.9% 감소하였다. 그리고 붕소화합물로 처리된 시험편의 연기강도(SI)는 공시편보다 1.16~3.92배 감소되어 연기 및 화재 위험성이 낮아지는 것으로 예상된다. 또한 붕소화합물로 처리한 시험편의 최대일산화탄소($CO_{peak}$) 농도는 공시편보다 12.7~30.9% 감소되었다. 그러나 미국직업안전위생관리국(OSHA) 허용기준(PEL)보다 1.52~1.92배 높은 치명적인 독성을 발생하는 것으로 측정되었다. 붕소화합물은 일산화탄소를 감소시키는 역할을 하였으나 편백목재 자체의 일산화탄소의 생성 농도가 높기 때문에 감소효과에 대한 기대에 미치지 못하였다.

Keywords

GOOOB2_2018_v29n6_670_f0001.png 이미지

Figure 1. Schematic diagram of cone calorimeter equipment[17].

GOOOB2_2018_v29n6_670_f0002.png 이미지

Figure 2. Oxygen (O2) consumption rate curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.

GOOOB2_2018_v29n6_670_f0003.png 이미지

Figure 3. The smoke production rate (m2/s) curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.

GOOOB2_2018_v29n6_670_f0004.png 이미지

Figure 4. CO concentration (ppm) curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.

GOOOB2_2018_v29n6_670_f0005.png 이미지

Figure 5. Emission concentration (ppm) curves of CO2 from cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.

GOOOB2_2018_v29n6_670_f0006.png 이미지

Figure 6. O2 depletion (%) curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.

Table 1. Specification of Cypress Specimens Painted with 15 wt% Boron Compounds Solutions

GOOOB2_2018_v29n6_670_t0001.png 이미지

Table 2. Combustion Properties of Cypress Specimens Painted with 15 wt% Solutions of Boron Compounds During Cone Calorimeter Test

GOOOB2_2018_v29n6_670_t0002.png 이미지

Table 3. Smoke Performance Index of Cypress Specimens Painted with 15 wt% Boron Compounds Solutions During Cone Calorimeter Test

GOOOB2_2018_v29n6_670_t0003.png 이미지

Table 4. Smoke Growth Index at 50 kW/m2 External Heat Flux

GOOOB2_2018_v29n6_670_t0004.png 이미지

Table 5. Smoke Intensity at 50 kW/m2 External Heat Flux

GOOOB2_2018_v29n6_670_t0005.png 이미지

References

  1. P. Bektha and P. Neimz, Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood, Holzforschung, 57, 539-546 (2003).
  2. P. Zhao, C. Guo, and L. Li, Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites, Constr. Build. Mater., 170, 193-199 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.074
  3. J. Jiang, J. Z. Li, J. Hu, and D. Fan, Effect of nitrogen phosphorus flame retardants on thermal degradation of wood, Constr. Build. Mater., 24, 2633-2637 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.064
  4. T. Jiang, X. Feng, Q. Wang, Z. Xiao, F. Wang, and Y. Xie, Fire performance of oak modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant, Constr. Build. Mater., 72, 1-6 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.004
  5. A. M. Pereyra and C. A. Giudic, Flame-retardant impregnants for woods based on alkaline silicates, Fire Saf. J., 44, 497-503 (2009). https://doi.org/10.1016/j.firesaf.2008.10.004
  6. R. H. White and M. A. Dietenberger, Fire safety of wood construction. In: R. J. Ross (ed.), Wood Handbook: Wood as an Engineering Material, Ch. 18, USDA Forest Service, WI, USA (2010).
  7. D. A. Purser, Toxic assessment of combustion products, in: P. J. DiNenno et al. (Eds.), The SFPE Handbook of Fire Protection Engineering (3rd ed.), pp. 83-171, National Fire Protection Association, MA, USA (2002).
  8. A. Ernst and J. D. Zibrak, Carbon monoxide poisoning, N. Engl. J. Med., 339, 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
  9. R. Von Burg, Toxicology update, J. Appl. Toxicol., 19, 379-386. USA (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
  10. U. C. Luft, Aviation Physiology: the Effects of Altitude in Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
  11. N. Ikeda, H. Takahashi, K. Umetsu, and T. Suzuki, The course of respiration and circulation in death by carbon dioxide poisoning, Forensic Sci. Int., 41, 93-99 (1989). https://doi.org/10.1016/0379-0738(89)90240-5
  12. D. A. Purser, A bioassay model for testing the incapacitating effects of exposure to combustion product atmospheres using cynomolgus monkeys, J. Fire Sci., 2, 20-26 (1984). https://doi.org/10.1177/073490418400200104
  13. V. Babrauskas, Development of the cone calorimeter - a bench-scale heat release rate apparatus based on oxygen consumption. In: S. J. Grayson and D. A. Smith (eds.) New Technology to Reduce Fire Losses and Costs, pp. 78-87, Elsevier Appied Science Publisher, London, UK (1986).
  14. M. M. Hirschler, Fire performance of organic polymers, thermal decomposition and chemical composition, ACS Symp. Ser., 797, 293-306 (2001).
  15. C. H. Lee, C. W. Lee, J. W. Kim, C. K. Suh, and K. M. Kim, Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus-nitrogen compounds, Korean Patent 2011-0034978 (2011).
  16. E. Jin and Y. J. Chung, Fire risk of wood treated with boron compounds by combustion test, Fire Sci. Eng., 32(3), 19-26 (2018). https://doi.org/10.7731/KIFSE.2018.32.3.019
  17. ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-Part 1: Heat release rate(cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
  18. R. Bergman, Drying and control of moisture content and dimensional changes, In: R. J. Ross (ed.), Wood Handbook-Wood as an Engineering Material, Ch. 13, USDA Forest Service, WI, USA (2010).
  19. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, MA, USA (2008).
  20. T. Balakrishnan, G. Bhagannaryana, and K. Ramamurthi, Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal, Spectrochim. Acta A, 71, 578-583 (2008). https://doi.org/10.1016/j.saa.2008.01.026
  21. O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Flame retardant treated plyood, Polym. Degrad. Stab., 64, 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  22. Q. Wang, J. Li, and J. E. Winady, Chemical mechanism of fire retardance of boric acid on wood, Wood Sci. Technol., 38, 375-389 (2004).
  23. M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang, and D. Bakirtzis, Flammability assesment of fire-retarded nordic spruce wood using thermogravimetric analyses and cone calorimetry, Fire Saf. J., 44, 1053-1069 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004
  24. B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi, and Y. Hu, Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene- vinyl acetate copolymer/microencapsulated ammonium polyphosphate/ polyamide-6 blends, ACS Appl. Mater. Interfaces, 3, 3754-3761 (2011). https://doi.org/10.1021/am200940z
  25. C. Jiao, X. Chen, and J. Zhang, Synergistic effects of $Fe_2O_3$ with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033
  26. L. Liu, J. Hu, J. Zhuo, C. Jiao, X. Chen, and S. Li, Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites, Polym. Degrad. Stab., 104, 87-94 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.03.019
  27. A. P. Mourituz, Z. Mathys, and A. G. Gibson, Heat release of polymer composites in fire, Composites A, 38, 1040-1054 (2005).
  28. OHSA, Carbon Monoxide, OSHA fact sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
  29. OHSA, Carbon Dioxide, Toxicological review of selected chemicals, final rule on air comments project, OHSA's Comments, Jannuary 19, USA (1989).
  30. MSHA, Carbon Monoxide, MSHA's occupational illness and injury prevention program topic, U.S. Department of Labor, USA (2015).
  31. M. J. Spearpoint and G. J. Quintiere, Predicting the burning of wood using an integral model, Combust. Flame, 123, 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0

Cited by

  1. Fire risk assessment of cypress wood coated with metal oxide and metal silicate flame retardant using cone calorimeter vol.38, pp.6, 2018, https://doi.org/10.1177/0734904120948215
  2. 화재 시 연소성 물질에 대한 화재 위험성 등급 평가 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1103
  3. 화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가 vol.32, pp.2, 2018, https://doi.org/10.14478/ace.2021.1016
  4. 건축자재용 폴리락타이드의 난연성 향상에 관한 연구 vol.21, pp.2, 2018, https://doi.org/10.5345/jkibc.2021.21.2.113