DOI QR코드

DOI QR Code

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment

고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향

  • Luu, Huyen Trang (Department of Environmental Engineering and Energy, Myongji University) ;
  • Minh, Dang Nhat (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • 루흐엔뜨랑 (명지대학교 환경에너지공학과) ;
  • 밍당낫 (명지대학교 환경에너지공학과) ;
  • 이기세 (명지대학교 환경에너지공학과)
  • Received : 2018.07.31
  • Accepted : 2018.08.21
  • Published : 2018.12.10

Abstract

Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

페니실린(PEN) 항생제의 분해를 위하여 오존, 과산화수소, 자외선으로 구성된 고도산화공정(AOP)을 적용하였다. 항생물질 분해효율은 흡광도(ABS) 및 총유기탄소(TOC) 분석으로 평가하였다. $O_3/H_2O_2/UV$$O_3/UV$ 조합이 ABS (9 min 동안 100%) 및 TOC 감소(60 min 동안 70%)에 가장 효과가 좋았으나 사용한 실험조건에서 항생제의 무기질화 및 독성제거는 완전하지 않았다. 항생물질에 의한 생독성은 Escherichia coli 민감도 및 Vibrio fischeri 생체형광 활성평가를 이용하였으며 $O_3/UV$에 의해 민감도는 9 min 동안 100% 감소, $O_3/H_2O_2/UV$에 의한 생체형광에 대한 독성은 60 min 동안 57% 감소하였다. 생물학적 분해를 위한 AOP 조합으로 $O_3/UV$ 조합을 선정하였으며 $BOD_5/COD$ 비율로 생분해도의 개선 여부를 간접 측정한 결과 $O_3/UV$로 30 min 처리함으로 $BOD_5/COD$ 비율이 약 4배 증가하였다. 페니실린 20 mg/L를 포함하는 인공폐수에 대하여 AOP 처리 후 Pseudomonas putida를 이용하여 호기적 생물학적 분해를 진행한 결과, $O_3/UV$ 전처리한 경우 페니실린의 완전 무기질화가 가능하였으며 전처리하지 않은 경우에 비하여 분해속도가 55% 증진되었다. 결론으로, 호기성 생물학적 처리를 위한 AOP 전처리로써 $O_3/UV$ 조합이 추천되며 페니실린의 완전 분해를 촉진할 수 있다.

Keywords

GOOOB2_2018_v29n6_690_f0001.png 이미지

Figure 1. Changes in absorbance and TOC during advanced oxidation of penicillin.

GOOOB2_2018_v29n6_690_f0002.png 이미지

Figure 2. Changes in (a) E. coli susceptibility and (b) V. fischeri bioluminescence during advanced oxidation of penicillin.

GOOOB2_2018_v29n6_690_f0003.png 이미지

Figure 3. The change in BOD5/COD ratio during O3/UV treatment of penicillin.

GOOOB2_2018_v29n6_690_f0004.png 이미지

Figure 4. TOC reduction by aerobic biological treatment of penicillin-containing wastewater.

References

  1. R. J. Fair and Y. Tor, Antibiotics and bacterial resistance in the 21st century, Perspect. Medicin. Chem., 6, 25-64 (2014).
  2. A. J. Ebele, Mohamed A.-E. Abdallah, and S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerg. Contam., 3(1), 1-16 (2017). https://doi.org/10.1016/j.emcon.2016.12.004
  3. P. Zhou, C. Su, B. Li, and Y. Qian, Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes, J. Environ. Eng., 132(1), 129-136 (2006). https://doi.org/10.1061/(ASCE)0733-9372(2006)132:1(129)
  4. C. Rering, K. Williams, M. Hengel, and R. Tjeerdema, Comparison of direct and indirect photolysis in imazosulfuron photodegradation, J. Agric. Food Chem., 65(15), 3103-3108 (2017). https://doi.org/10.1021/acs.jafc.7b00134
  5. J. L. Tambosi, R. F. Sena, W. Gebhardt, R. F. P. M. Moreira, H. J. Jose, and H. F. Schroder, Physicochemical and advanced oxidation processes: A comparison of elimination results of antibiotic compounds following an MBR treatment, Ozone Sci. Eng., 31, 428-435 (2009). https://doi.org/10.1080/01919510903324420
  6. F. A. Almomani, M. Shawaqfah, R. R. Bhosale, and A. Kumar, Removal of emerging pharmaceuticals from wastewater by ozone-based advanced oxidation processes, Environ. Prog. Sustain. Energy, 35(4), 982-995 (2016). https://doi.org/10.1002/ep.12306
  7. F. Yuan, C. Hu, X. Hu, D. Wei, Y. Chen, and J. Qu, Photodegradation and toxicity changes of antibiotics in UV and UV/$H_2O_2$ process, J. Hazard. Mater., 185, 1256-1263 (2001).
  8. G. Lofrano, R. Pedrazzani, G. Libralato, and M. Carotenuto, Advanced oxidation processes for antibiotics removal: A review, Curr. Org. Chem., 21, 1-14 (2017).
  9. I. Oller, S. Malato, and J. A. Sanchez-Perez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review, Sci. Total Environ., 409, 4141-4166 (2011). https://doi.org/10.1016/j.scitotenv.2010.08.061
  10. S. Yahiat, F. Fourcade, S. Brosillon, and A. Amrane, Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment: Case of tetracycline and tylosin, Int. Biodeterior. Biodegradation, 65, 997-1003 (2012).
  11. I. Lee, E. Lee, H. Lee, and K. Lee, Removal of COD and color from anaerobic digestion effluent of livestock wastewater by advanced oxidation using microbubbled ozone, Appl. Chem. Eng., 22(6), 617-622 (2011).
  12. A. W. Bauer, W. M. M. Kirby, J. C. Sherris, and M. Turck, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 36, 493-496 (1996).
  13. V. L. K. Jennings, M. H. Rayner-Brandes, and D. J. Bird, Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri), Water Res., 35, 3448-3456 (2001). https://doi.org/10.1016/S0043-1354(01)00067-7
  14. G. M. Robinson, K. Tonks, R. M. S. Thorn, and D. M. Reynolds, Application of bacterial bioluminescence to assess the efficacy of fast-acting biocides, Antimicrob. Agents Chemother., 55(11), 5214-5219 (2011). https://doi.org/10.1128/AAC.00489-11
  15. H. T. Luu, Degradation and Changes in Toxicity and Biodegradability of Antibiotics during Advanced Oxidation Processes, MS Thesis, Myongji University, Korea (2013).
  16. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, USA (2005).
  17. H. T. Luu and K. Lee, Degradation and changes in toxicity and biodegradability of tetracycline during ozone/ultraviolet-based advanced oxidation, Water Sci. Technol., 70(7), 1229-1235 (2014). https://doi.org/10.2166/wst.2014.350
  18. I. Dalmázio, M. O. Almeida, R. Augusti, and T. M. A. Alves, Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry, J. Am. Soc. Mass Spectrom., 18, 679-687 (2007). https://doi.org/10.1016/j.jasms.2006.12.001
  19. B. De Witte, H. V. Langenhove, K. Demeestere, K. Saerens, P. D. Wispelaere, and J. Dewulf, Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: Effect of pH and $H_2O_2$, Chemosphere, 78, 1142-1147 (2010). https://doi.org/10.1016/j.chemosphere.2009.12.026
  20. O. S. Keen and K. G. Linden, Degradation of antibiotic activity during UV/$H_2O_2$ advanced oxidation and photolysis in wastewater effluent, Environ. Sci. Technol., 47(22), 13020-13030 (2013). https://doi.org/10.1021/es402472x
  21. A. M. Parker, Y. Lester, E. K. Spangler, U. von Gunten, and K. G. Linden, UV/$H_2O_2$ advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays, Chemosphere, 182, 477-482 (2017). https://doi.org/10.1016/j.chemosphere.2017.04.150
  22. A. I. Alaton and A. E. Caglayan, Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent, Ecotoxicol. Environ. Saf., 63, 131-140 (2006). https://doi.org/10.1016/j.ecoenv.2005.02.014
  23. J. Jeong, W. Song, J. C. William, J. Jung, and J. Greaves, Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere, 78, 533-540 (2010). https://doi.org/10.1016/j.chemosphere.2009.11.024
  24. A. L. Estrada and Y.-Y. Li, and A. Wang, Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process, J. Hazard. Mater., 227-228, 41-48 (2012). https://doi.org/10.1016/j.jhazmat.2012.04.079
  25. A. Alaton, S. Dogruel, E. Baykal, and G. Gerone, Combined chemical and biological oxidation of penicillin formulation effluent, J. Environ. Manag., 73, 155-163 (2004). https://doi.org/10.1016/j.jenvman.2004.06.007

Cited by

  1. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview vol.12, pp.1, 2018, https://doi.org/10.3390/w12010102
  2. 오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화 vol.31, pp.3, 2018, https://doi.org/10.14478/ace.2020.1037
  3. 전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구 vol.32, pp.4, 2018, https://doi.org/10.14478/ace.2021.1039