DOI QR코드

DOI QR Code

A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics

실시간 데이터 분석의 성능개선을 위한 적응형 학습 모델 연구

  • Ku, Jin-Hee (Division of Information Communication Convergence Engineering, Mokwon University)
  • 구진희 (목원대학교 정보통신융합공학부)
  • Received : 2018.01.25
  • Accepted : 2018.02.20
  • Published : 2018.02.28

Abstract

Recently, as technologies for realizing artificial intelligence have become more common, machine learning is widely used. Machine learning provides insight into collecting large amounts of data, batch processing, and taking final action, but the effects of the work are not immediately integrated into the learning process. In this paper proposed an adaptive learning model to improve the performance of real-time stream analysis as a big business issue. Adaptive learning generates the ensemble by adapting to the complexity of the data set, and the algorithm uses the data needed to determine the optimal data point to sample. In an experiment for six standard data sets, the adaptive learning model outperformed the simple machine learning model for classification at the learning time and accuracy. In particular, the support vector machine showed excellent performance at the end of all ensembles. Adaptive learning is expected to be applicable to a wide range of problems that need to be adaptively updated in the inference of changes in various parameters over time.

최근 인공지능을 구현하기 위한 기술들이 보편화되면서 특히, 기계 학습이 폭넓게 사용되고 있다. 기계 학습은 대량의 데이터를 수집하고 일괄적으로 처리하며 최종 조치를 취할 수 있는 통찰력을 제공하나, 작업의 효과가 즉시 학습 과정에 통합되지는 않는다. 본 연구에서는 비즈니스의 큰 이슈로서 실시간 데이터 분석의 성능을 개선하기 위한 적응형 학습 모델을 제안하였다. 적응형 학습은 데이터세트의 복잡성에 적응하여 앙상블을 생성하고 알고리즘은 샘플링 할 최적의 데이터 포인트를 결정하는데 필요한 데이터를 사용한다. 6개의 표준 데이터세트를 대상으로 한 실험에서 적응형 학습 모델은 학습 시간과 정확도에서 분류를 위한 단순 기계 학습 모델보다 성능이 우수하였다. 특히 서포트 벡터 머신은 모든 앙상블의 후단에서 우수한 성능을 보였다. 적응형 학습 모델은 시간이 지남에 따라 다양한 매개변수들의 변화에 대한 추론을 적응적으로 업데이트가 필요한 문제에 폭넓게 적용될 수 있을 것으로 기대한다.

Keywords

References

  1. R. Curran & B. Purcell. (2017). TechRadarTM: Artificial Intelligence Technologies, Q1 2017. Forrester Research. https://kloudrydermcaasicmforrester.s3.amazonaws.com/ mcaas/Reprints/RES129161.pdf
  2. J. H. Ku. (2017). A Study on the Machine Learning Model for Product Faulty Prediction in Internet of Things Environment. Journal of Convergence for Information Technology, 7(1), 55-60. DOI : 10.22156/cs4smb.2017.7.1.055
  3. Y. Zeng & D. Klabjan. (2017). Online Adaptive Machine Learning Based Algorithm for Implied Volatility Surface Modeling. arXiv preprint arXiv : 1706.01833.
  4. Tom M. Mitchell. (1997). Machine Learning. New York : McGraw-Hill Education.
  5. PG. Madhavan. (2016). ADAPTIVE Machine Learning. Data Science Central. https://www.datasciencecentral.com/profiles/blogs/adaptive-machine-learning
  6. R. Munro. (2015). The fourth generation of machine learning : Adaptive learning. jungle light speed. http://www.junglelightspeed.com/the-fourth-generation-of-machine-learning-adaptive-learning
  7. Wikipedia. (2017). AdaBoost. Wikipedia. https://en.wikipedia.org/wiki/AdaBoost
  8. E. J. Kim. (2016). Introduction to Artificial Intelligence, Machine Learning, and Deep Learning. Seoul : Books Wiki.
  9. D. O. Gloria. (2002). Ship Noise Classification. Doctoral dissertation. New University of Lisbon, Lisbon.
  10. P. Hart. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 14, 515-516. https://doi.org/10.1109/TIT.1968.1054155
  11. VN. Vapnik. (1995). The Nature of Statistical Learning Theory. New York : Springer-Verlag New York, Inc.
  12. C. H. Chou, B. H. Kuo & F. Chang. (2006). The generalized condensed nearest neighbor rule as a data reduction method. In Pattern Recognition, 2006. ICPR 2006. 18th International Conference on (2, pp. 556-559). IEEE. DOI : 10.1109/ICPR.2006.1119
  13. A. Abroudi & F. Farokhi. (2012). Prototype selection for training artificial neural networks based on Fast Condensed Nearest Neighbor rule. In Open Systems (ICOS), 2012 IEEE Conference on (pp. 1-4). IEEE..
  14. F. Chang, C. C. Lin & C. J. Lu. (2006). Adaptive Prototype Learning Algorithms : Theoretical and Experimental Studies. Journal of Machine Learning Research, 7, 2125-2148.
  15. A. Pratap. (2008). Adaptive Learning Algorithms and Data Cloning. Doctoral dissertation. California Institute of Technology, California.
  16. G. Castillo. (2008). Adaptive Learning Algorithms for Bayesian Network Classifiers. AI Communications, 21(1), 87-88.
  17. S. H. Min. (2016). Improving an Ensemble Model Using Instance Selection Method. Journal of Society of Korea Industrial and Systems Engineering, 39(1), 105-115. DOI : 10.11627/jkise.2016.39.1.105
  18. V. Solutions. (2017). Improving Predictions with Ensemble Model. Data Science Central. https://www.datasciencecentral.com/profiles/blogs/improving-predictions-with-ensemble-model